Skip to main content

PathoSpotter: Computational Intelligence Applied to Nephropathology

  • Chapter
  • First Online:
Innovations in Nephrology

Abstract

Evidence-based medicine has received increasing attention. This type of medicine would have the benefit of using large data sets to investigate clinical–laboratory associations and validate hypotheses grounded on data. Pathology is one area that has been benefited from large data sets of images, having advances leveraged by computational pathology, which in turn relies in the advances of the methods conceived by the computational intelligence and the computer vision fields. This type of medicine would benefit of using large. By particularly considering kidney biopsies, computational nephropathology seeks to identify renal lesions from primary computer vision tasks that involve classification and segmentation of renal structures on histology images. In this context, this chapter aims at discussing some advances in computational nephropathology, contextualizing them in the scope of the PathoSpotter project. We also address current achievements and challenges, as well as dig in future prospects to the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://pathospotter.bahia.fiocruz.br

  2. 2.

    The Brazilian Health Ministry Research Agency. https://portal.fiocruz.br/en/

  3. 3.

    https://pathospotter.bahia.fiocruz.br/pathospottersearch

References

  1. Tolles WE. Section of biology: the cytoanalyzer—an example of physics in medical research. Trans N Y Acad Sci. 1955;17(3 Series II):250–6.

    Article  CAS  PubMed  Google Scholar 

  2. Abel J, Ouillette P, Williams C, Blau J, Cheng J, Yao K, Lee W, Cornish T, Balis U, McClintock D. Display characteristics and their impact on digital pathology: a current review of pathologists future microscope. J Pathol Inform. 2020;11:23. https://doi.org/10.4103/jpi.jpi_38_20.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jader G, Fontineli J, Ruiz M, Abdalla K, Pithon M, Oliveira L. Deep instance segmentation of teeth in panoramic X-ray images. In: 2018 31st SIBGRAPI conference on graphics, patterns and images (SIBGRAPI). Piscataway, NJ: IEEE; 2018. p. 400–7.

    Google Scholar 

  4. Silva G, Oliveira L, Pithon M. Automatic segmenting teeth in X-ray images: trends, a novel data set, benchmarking and future perspectives. Expert Syst Appl. 2018;107:15–31.

    Article  Google Scholar 

  5. Silva B, Pinheiro L, Oliveira L, Pithon M. A study on tooth segmentation and numbering using end-to-end deep neural networks. In: 2020 33rd SIBGRAPI conference on graphics, patterns and images (SIBGRAPI). Piscataway, NJ: IEEE; 2020. p. 164–71.

    Google Scholar 

  6. Abhishek D, Aarti S, Sachi G, Sudip D. Use of artificial intelligence in dermatology. Indian J Dermatol. 2020;65:352–7.

    Article  Google Scholar 

  7. Abraham A, Sobhanakumari K, Mohan A. Artificial intelligence in dermatology. J Skin Sex Transm Dis. 2021;3(1):99–102.

    Google Scholar 

  8. Young AT, Xiong M, Pfau J, Keiser MJ, Wei ML. Artificial intelligence in dermatology: a primer. J Invest Dermatol. 2020;140(3):1504–12.

    Article  CAS  PubMed  Google Scholar 

  9. Barros GO, Navarro B, Duarte A, dos Santos WLC. PathoSpotter-K: a computational tool for the automatic identification of glomerular lesions in histological images of kidneys. Sci Rep. 2017;7:1–8. https://doi.org/10.1038/srep46769.

    Article  Google Scholar 

  10. Ginley B, Tomaszewski JE, Yacoub R, Chen F, Sarder P. Unsupervised labeling of glomerular boundaries using Gabor filters and statistical testing in renal histology. J Med Imaging. 2017;4(2):021102. https://doi.org/10.1117/1.jmi.4.2.021102.

    Article  Google Scholar 

  11. Chagas P, Souza L, Araújo I, Aldeman N, Duarte A, Angelo M, dos Santos WLC, Oliveira L. Classification of glomerular hypercellularity using convolutional features and support vector machine. Artif Intell Med. 2020;103:101808. https://doi.org/10.1016/j.artmed.2020.101808.

    Article  PubMed  Google Scholar 

  12. Chagas P, Souza L, Calumby R, Duarte A, Angelo M, dos Santos WLC, Oliveira L. Deep-learningbased membranous nephropathy classification and Monte-Carlo dropout uncertainty estimation. In: Simpósio Brasileiro de Computação Aplicada à Saúde 𝑆𝐵𝐶𝐴𝑆; 2021. https://doi.org/10.5753/sbcas.2021.

  13. Chagas P, Souza L, Calumby R, Pontes I, Araújo S, Duarte A, Pinheiro N, dos Santos WLC, Oliveira L. Toward unbounded open-set recognition to say “I don’t know” for glomerular multi-lesion classification. In: International symposium on medical information processing and analysis (SIPAIM); 2021.

    Google Scholar 

  14. Rehem JMC, Santos WLC, Duarte AA, Oliveira LR, Angelo MF. Automatic glomerulus detection in renal histological images. In: Proceedings–SPIE medical imaging 11603; 2021. https://doi.org/10.1117/12.2582201.

  15. Tan P-N, Steinbach M, Karpatne A, Kumar V. Introduction to data mining. London: Pearson; 2019.

    Google Scholar 

  16. Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278–323. https://doi.org/10.1109/5.726791.

    Article  Google Scholar 

  17. Rajaraman A, Ullman JD. Mining of massive datasets. Cambridge: Cambridge University Press; 2011. https://doi.org/10.1017/CBO9781139058452.

    Book  Google Scholar 

  18. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge, MA: MIT Press; 2016. http://www.deeplearningbook.org.

    Google Scholar 

  19. Krizhevsky ISA, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90. https://doi.org/10.1145/3065386.

    Article  Google Scholar 

  20. Russakovsky O, Deng J, Hao S, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L. ImageNet large scale visual recognition challenge. Int J Comput Vis. 2015;115:211–52. https://doi.org/10.1007/s11263-015-0816-y.

    Article  Google Scholar 

  21. Pratt LY, Pratt LY, Hanson SJ, Giles CL, Cowan JD. Discriminability-based transfer between neural networks. In: Advances in neural information processing systems; 1993. p. 204–11.

    Google Scholar 

  22. Prewitt JMS, Mendelsohn ML. The analysis of cell images. Ann N Y Acad Sci. 1966;128(3):1035–53. https://doi.org/10.1111/j.1749-6632.1965.tb11715.x.

    Article  CAS  PubMed  Google Scholar 

  23. Hekler A, Utikal JS, Enk AH, Solass W, Schmitt M, Klode J, Schadendorf D, Wiebke S, Franklin C, Bestvater F, Flaig MJ, Krahl D, von Kalle C, Fröhling S, Brinker TJ. Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Eur J Cancer. 2019;118:91–6. https://doi.org/10.1016/j.ejca.2019.06.012.

    Article  PubMed  Google Scholar 

  24. Arvaniti E, Fricker KS, Moret M, Rupp N, Hermanns T, Fankhauser C, Wey N, Wild PJ, Rüschoff JH, Claassen M. Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Sci Rep. 2018;8(12054):1–11. https://doi.org/10.1038/s41598-018-30535-1.

    Article  CAS  Google Scholar 

  25. Fogo AB, Lusco MA, Najafian B, Alpers CE. AJKD atlas of renal pathology: minimal change disease. Am J Kidney Dis. 2015;66(2):376–7. https://doi.org/10.1053/j.ajkd.2015.04.006.

    Article  PubMed  Google Scholar 

  26. Fogo AB, Lusco MA, Najafian B, Alpers CE. AJKD atlas of renal pathology: focal segmental glomerulosclerosis. Am J Kidney Dis. 2015;66(2):e1–2. https://doi.org/10.1053/j.ajkd.2015.04.007.

  27. Bajema IM, Wilhelmus S, Alpers CE, Bruijn JA, Colvin RB, Terencecook H, D’Agati VD, Ferrario F, Haas M, Jennette JC, Joh K, Nast CC, Noël LH, Rijnink EC, Roberts ISD, Seshan SV, Sethi S, Fogo AB. Revision of the International Society of Nephrology/Renal Pathology Society classification for lupus nephritis: clarification of definitions, and modified National Institutes of Health activity and chronicity indices. Kidney Int. 2018;93(4):789–96. https://doi.org/10.1016/j.kint.2017.11.023.

    Article  PubMed  Google Scholar 

  28. Bhowmik DM, Dinda AK, Mahanta P, Agarwal SK. The evolution of the Banff classification schema for diagnosing renal allograft rejection and its implications for clinicians. Indian J Nephrol. 2010;20(1):2–8. https://doi.org/10.4103/0971-4065.6208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. dos Santos WLC, Sweet GMM, Azevêdo LG, Tavares MB, Soares MFS, de Melo CVB, Carneiro MFM, de Souza Santos RF, Conrado MC, Braga DTL, Bessa MC, de Freitas Pinheiro Junior N, Bahiense-Oliveira M. Current distribution pattern of biopsy-proven glomerular disease in Salvador, Brazil, 40 years after an initial assessment. J Bras Nefrol. 2017;39(4):376–83. https://doi.org/10.5935/0101-2800.20170069.

  30. Zhou XS, Huang TS. CBIR: from low-level features to high-level semantics. In: Image and video communications and processing, vol. 3974. Bellingham: International Society for Optics and Photonics; 2000. p. 426–31.

    Google Scholar 

  31. Mikolajczyk K, Schmid C. Scale & affine invariant interest point detectors. Int J Comput Vis. 2004;60(1):63–86.

    Article  Google Scholar 

  32. Bay H, Ess A, Tuytelaars T, Van Gool L. Speededup robust features (SURF). Comput Vis Image Underst. 2008;110(3):346–59.

    Article  Google Scholar 

  33. Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), vol. 1; 2005. p. 886–93.

    Google Scholar 

  34. Rinaldi AM, Russo C. A content based image retrieval approach based on multiple multimedia features descriptors in E-health environment. In: 2020 IEEE international symposium on medical measurements and applications (MeMeA); 2020. p. 1–6.

    Google Scholar 

  35. LeCun Y, Kavukcuoglu K, Farabet C. Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International symposium on circuits and systems. Piscataway, NJ: IEEE; 2010. p. 253–6.

    Google Scholar 

  36. Shah A, Naseem R, Iqbal S, Shah MA, et al. Improving cbir accuracy using convolutional neural network for feature extraction. In: 2017 13th international conference on emerging technologies (ICET). Piscataway, NJ: IEEE; 2017. p. 1–5.

    Google Scholar 

  37. Azizpour H, Razavian AS, Sullivan J, Maki A, Carlsson S. From generic to specific deep representations for visual recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops; 2015. p. 36–45.

    Google Scholar 

  38. Kruthika KR, Maheshappa HD, Initiative A’s DN, et al. CBIR system using capsule networks and 3D CNN for Alzheimer’s disease diagnosis. Inform Med Unlock. 2019;14:59–68.

    Article  Google Scholar 

  39. Sezavar A, Farsi H, Mohamadzadeh S. Content-based image retrieval by combining convolutional neural networks and sparse representation. Multimed Tools Appl. 2019;78(15):20895–912.

    Article  Google Scholar 

  40. Ozen Y, Aksoy S, Kösemehmetoğlu K, Önder S, Üner A. Self-supervised learning with graph neural networks for region of interest retrieval in histopathology. In: 2020 25th International conference on pattern recognition (ICPR); 2021. p. 6329–34. https://doi.org/10.1109/ICPR48806.2021.9412903.

  41. Zheng Y, Jiang Z, Xie F, Shi J, Zhang H, Huai J, Cao M, Yang X. Diagnostic regions attention network (DRA-net) for histopathology WSI recommendation and retrieval. IEEE Trans Med Imaging. 2021;40(3):1090–103.

    Article  PubMed  Google Scholar 

  42. Hein M, Andriushchenko M, Bitterwolf J. Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; 2019. p. 41–50.

    Google Scholar 

  43. Kendall A, Gal Y. What uncertainties do we need in Bayesian deep learning for computer vision? In: Proceedings of the 31st international conference on neural information processing systems. NIPS’17. Long Beach, CA: Curran Associates; 2017. p. 5580–90.

    Google Scholar 

  44. Begoli E, Bhattacharya T, Kusnezov D. The need for uncertainty quantification in machine-assisted medical decision making. Nat Mach Intell. 2019;1(1):20–3.

    Article  Google Scholar 

  45. Leibig C, Allken V, Ayhan MS, Berens P, Wahl S. Leveraging uncertainty information from deep neural networks for disease detection. Sci Rep. 2017;7(1):1–14.

    Article  CAS  Google Scholar 

  46. Combalia M, Hueto F, Puig S, Malvehy J, Vilaplana V. Uncertainty estimation in deep neural networks for dermoscopic image classification. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops; 2020. p. 744–5.

    Google Scholar 

  47. Cicalese PA, Mobiny A, Shahmoradi Z, Yi X, Mohan C, Van Nguyen H. Kidney level lupus nephritis classification using uncertainty guided Bayesian convolutional neural net-works. IEEE J Biomed Health Inform. 2020;25(2):315–24.

    Article  Google Scholar 

  48. Roady R, Hayes TL, Kemker R, Gonzales A, Kanan C. Are open set classification methods effective on large-scale datasets? PLoS One. 2020;15(9):e0238302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ginley B, Lutnick B, Jen KY, Fogo A, Jain S, Rosenberg A, Walavalkar V, Wilding G, Tomaszewski JE, Yacoub R, Rossi GM, Sarder P. Computational segmentation and classification of diabetic glomerulosclerosis. J Am Soc Nephrol. 2019;30(10):1953–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. D’Agati VD, Fogo AB, Bruijn JA, Charles Jennette J. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am J Kidney Dis. 2004;43(2):368–82. https://doi.org/10.1053/j.ajkd.2003.10.024.

    Article  PubMed  Google Scholar 

  51. Markowitz G. Updated Oxford classification of IgA nephropathy: a new MEST-C score. Nat Rev Nephrol. 2017;13(7):385–6.

    Article  CAS  PubMed  Google Scholar 

  52. Roberts ISD, Cook HT, Troyanov S, Alpers CE, Amore A, Barratt J, Berthoux F, Bonsib S, Bruijn JA, Cattran DC, Coppo R, D’Agati V, D’Amico G, Emancipator S, Emma F, Feehally J, Ferrario F, Fervenza SFFC, Geddes Agnes Fogo CC, Groene H-J, Andrew M, Haas HM, Hill PA, Hogg RJ, Hsu SI, Jennette JC, Joh K, Julian BA, Kawamura T, Lai FM, Li L-S, Li PKT, Liu Z-H, Mackinnon B, Mezzano S, Schena FP, Tomino Y, Walker HWPD, Weening JJ, Yoshikawa N, Zhang H. The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int. 2009;76(5):546–56. https://doi.org/10.1038/ki.2009.168.

    Article  PubMed  Google Scholar 

  53. Polito MG, De Moura LAR, Kirsztajn GM. An overview on frequency of renal biopsy diagnosis in Brazil: clinical and pathological patterns based on 9617 native kidney biopsies. Nephrol Dial Transplant. 2010;25:490–6. https://doi.org/10.1093/ndt/gfp355.

    Article  PubMed  Google Scholar 

  54. Alturkistani HA, Tashkandi FM, Mohammedsaleh ZM. Histological stains: a literature review and case study. In: Global journal of health science. Richmond Hill, ON: Canadian Center of Science and Education; 2015. p. 72–9. https://doi.org/10.5539/gjhs.v8n3p72.

Download references

Acknowledgments

The PathoSpotter project is partially sponsored by the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB), grants TO-P0008/15 and TO-SUS0031/2018, and by the Inova FIOCRUZ grant. Washington dos Santos and Luciano Oliveira are research fellows of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grants 306779/2017 and 307550/2018-4, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oliveira, L. et al. (2022). PathoSpotter: Computational Intelligence Applied to Nephropathology. In: Bezerra da Silva Junior, G., Nangaku, M. (eds) Innovations in Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-031-11570-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11570-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11569-1

  • Online ISBN: 978-3-031-11570-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics