Skip to main content

Conclusion and Perspectives: What Convergent Evolution of Animal Forms and Functions Says About the Predictability of Evolution

  • Chapter
  • First Online:
Convergent Evolution

Part of the book series: Fascinating Life Sciences ((FLS))

  • 1085 Accesses

Abstract

Investigations into the convergent evolution of form and function have led to the idea that evolution is, to some extent, predictable. Developmental and physical constraints limit the potential biological forms available for achieving particular functions. The more that forms and functions of animals are compared across the animal phylogeny, the closer we get to creating a mechanistic understanding of biological organization that allows us to make predictions about structure. This is also true for the nervous system, which has not been the subject of much phylogenetic study. Ideal solutions are not always feasible and must be taken into account when modeling neural circuits. For example, although mathematical theories predict that half-center oscillators consisting of two equal halves can produce stable oscillations of neural activity, symmetric half-center oscillators are biologically feasible only when identical contralateral neurons comprise the two halves. Dorsal-ventral rhythmic activity, including flexor-extensor alternation is not produced though a symmetric half-center oscillator because of developmental and physical constraints. It was thought that developmental constraints also limited gross changes to brain anatomy. However, studies of convergent evolution found that brains exhibit mosaic differences in the growth of areas under selection for particular functions. More common than mosaic growth are genomic and genetic convergences on protein expression in particular cells that create functions, as is seen in invertebrate central pattern generators, mammalian echolocation, and fish electrogenesis. Genomic convergence may allow researchers to predict functional convergence by searching for genetic signatures. By studying convergent evolution, we learn the rules of biological organization that allow us to predict form and function, leading to an understanding of the fundamental principles that apply to organisms under all conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves-Gomes, J. A. (2001). The evolution of electroreception and bioelectrogenesis in teleost fish: A phylogenetic perspective. Journal of Fish Biology, 58(6), 1489–1511.

    Article  Google Scholar 

  • Arnegard, M. E., Zwickl, D. J., Lu, Y., & Zakon, H. H. (2010). Old gene duplication facilitates origin and diversification of an innovative communication system--twice. Proceedings of the National Academy of Sciences United States of America, 107(51), 22172–22177.

    Article  CAS  Google Scholar 

  • Arshavsky, Y. I., Deliagina, T. G., Orlovsky, G. N., Panchin, Y. V., Popova, L. B., & Sadreyev, R. I. (1998). Analysis of the central pattern generator for swimming in the mollusk Clione. Annals of the New York Academy of Sciences, 860, 51–69.

    Article  CAS  PubMed  Google Scholar 

  • Ausborn, J., Shevtsova, N. A., & Danner, S. M. (2021). Computational modeling of spinal locomotor circuitry in the age of molecular genetics. International Journal of Molecular Sciences, 22(13), 6835.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker, C. V., & Modrell, M. S. (2018). Insights into electroreceptor development and evolution from molecular comparisons with hair cells. Integrative and Comparative Biology, 58(2), 329–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker, A. J. (2021). Brains and speciation: Control of behavior. Current Opinion in Neurobiology, 71, 158–163.

    Article  CAS  PubMed  Google Scholar 

  • Barton, R. A., & Harvey, P. H. (2000). Mosaic evolution of brain structure in mammals. Nature, 405(6790), 1055–1058.

    Article  CAS  PubMed  Google Scholar 

  • Brinkløv, S., Fenton, M. B., & Ratcliffe, J. M. (2013). Echolocation in oilbirds and swiftlets. Frontiers in Physiology, 4, 123.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown, T. G. (1914). On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. The Journal of Physiology, 48(1), 18–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bullock, T. H., Northcutt, R. G., & Bodznick, D. A. (1982). Evolution of electroreception. Trends in Neurosciences, 5, 50–53.

    Article  Google Scholar 

  • Bullock, T. H., Bodznick, D. A., & Northcutt, R. G. (1983). The phylogenetic distribution of electroreception: Evidence for convergent evolution of a primitive vertebrate sense modality. Brain Research, 287(1), 25–46.

    Article  CAS  PubMed  Google Scholar 

  • Burkhardt, P., & Jékely, G. (2021). Evolution of synapses and neurotransmitter systems: The divide-and-conquer model for early neural cell-type evolution. Current Opinion in Neurobiology, 71, 127–138.

    Article  CAS  PubMed  Google Scholar 

  • Calabrese, R. L. (1995). Half-center oscillators underlying rhythmic movements. Nature, 261, 146–148.

    Google Scholar 

  • Chacron, M. J., Longtin, A., & Maler, L. (2011). Efficient computation via sparse coding in electrosensory neural networks. Current Opinion in Neurobiology, 21(5), 752–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai, S., Tian, R., Rong, X., Li, G., Chen, B., Ren, W., Xu, S., & Yang, G. (2020). Evidence of echolocation in the common shrew from molecular convergence with other echolocating mammals. Zoological Studies, 59, e4.

    PubMed  PubMed Central  Google Scholar 

  • Cisek, P., & Hayden, B. Y. (2022). Neuroscience needs evolution. The Royal Society.

    Book  Google Scholar 

  • Conway Morris, S. (2010). Evolution: like any other science it is predictable. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365(1537), 133–145.

    Article  PubMed Central  Google Scholar 

  • Crampton, W. G. (2019). Electroreception, electrogenesis and electric signal evolution. Journal of Fish Biology, 95(1), 92–134.

    Article  PubMed  Google Scholar 

  • Croll, R. P. (1987). Identified neurons and cellular homologies. In M. A. Ali (Ed.), Nervous systems in invertebrates. Plenum Publishing Corporation.

    Google Scholar 

  • Darwin, C. (1859). On the origin of species by natural selection, or the preservation of favoured races in the struggle for life. John Murray.

    Book  Google Scholar 

  • De Winter, W., & Oxnard, C. E. (2001). Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature, 409(6821), 710–714.

    Article  PubMed  Google Scholar 

  • Dobzhansky, T. (1973). Nothing in biology makes sense except in the light of evolution. The American Biology Teacher, 35, 125–129.

    Article  Google Scholar 

  • Eisthen, H. L., & Nishikawa, K. C. (2002). Convergence: Obstacle or opportunity? Brain, Behavior and Evolution, 59(5–6), 235–239.

    Article  PubMed  Google Scholar 

  • Elbassiouny, A. A., Lovejoy, N. R., & Chang, B. S. (2020). Convergent patterns of evolution of mitochondrial oxidative phosphorylation (OXPHOS) genes in electric fishes. Philosophical Transactions of the Royal Society B, 375(1790), 20190179.

    Article  CAS  Google Scholar 

  • Finlay, B. L., & Darlington, R. B. (1995). Linked regularities in the development and evolution of mammalian brains. Science, 268, 1578–1584.

    Article  CAS  PubMed  Google Scholar 

  • Finlay, B. L., Hinz, F., & Darlington, R. B. (2011). Mapping behavioural evolution onto brain evolution: The strategic roles of conserved organization in individuals and species. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366(1574), 2111–2123.

    Article  PubMed  PubMed Central  Google Scholar 

  • Forsman, K., & Malmquist, M. (1988). Evidence for echolocation in the common shrew, Sorex araneus. Journal of Zoology, 216(4), 655–662.

    Article  Google Scholar 

  • Gallant, J. R., & O'Connell, L. A. (2020). Studying convergent evolution to relate genotype to behavioral phenotype. The Journal of Experimental Biology, 223(Pt Suppl 1), jeb208934.

    Google Scholar 

  • Gallant, J. R., Traeger, L. L., Volkening, J. D., Moffett, H., Chen, P. H., Novina, C. D., Phillips, G. N., Jr., Anand, R., Wells, G. B., Pinch, M., Guth, R., Unguez, G. A., Albert, J. S., Zakon, H. H., Samanta, M. P., & Sussman, M. R. (2014). Genomic basis for the convergent evolution of electric organs. Science, 344(6191), 1522–1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbs, M. A. (2004). Lateral line receptors: where do they come from developmentally and where is our research going? Brain, Behavior and Evolution, 64(3), 163–181.

    Article  PubMed  Google Scholar 

  • Gould, E. (1965). Evidence for echolocation in the Tenrecidae of Madagascar. Proceedings of the American Philosophical Society, 109(6), 352–360.

    Google Scholar 

  • Griffin, D. R., & Thompson, D. (1982). Echolocation by cave swiftlets. Behavioral Ecology and Sociobiology, 10(2), 119–123.

    Article  Google Scholar 

  • He, D. Z., Lovas, S., Ai, Y., Li, Y., & Beisel, K. W. (2014). Prestin at year 14: Progress and prospect. Hearing Research, 311, 25–35.

    Article  CAS  PubMed  Google Scholar 

  • He, K., Liu, Q., Xu, D.-M., Qi, F.-Y., Bai, J., He, S.-W., Chen, P., Zhou, X., Cai, W.-Z., Chen, Z.-Z., Liu, Z., Jiang, X.-L., & Shi, P. (2021). Echolocation in soft-furred tree mice. Science, 372(6548), eaay1513.

    Article  CAS  PubMed  Google Scholar 

  • Heiligenberg, W. (1991). The neural basis of behavior: A neuroethological view. Annual Review of Neuroscience, 14, 247–267.

    Article  CAS  PubMed  Google Scholar 

  • Hill, A. A., Lu, J., Masino, M., Olsen, O., & Calabrese, R. L. (2001). A model of a segmental oscillator in the leech heartbeat neuronal network. Journal of Computational Neuroscience, 10(3), 281–302.

    Article  CAS  PubMed  Google Scholar 

  • Iyer, A. A., & Briggman, K. L. (2021). Amphibian behavioral diversity offers insights into evolutionary neurobiology. Current Opinion in Neurobiology, 71, 19–28.

    Article  CAS  PubMed  Google Scholar 

  • Jordan Price, J., Johnson, P., Clayton, K. H., & D. (2004). The evolution of echolocation in swiftlets. Journal of Avian Biology, 35(2), 135–143.

    Article  Google Scholar 

  • Jourjine, N., & Hoekstra, H. E. (2021). Expanding evolutionary neuroscience: Insights from comparing variation in behavior. Neuron, 109(7), 1084–1099.

    Article  CAS  PubMed  Google Scholar 

  • Juvin, L., Simmers, J., & Morin, D. (2007). Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion–extension oscillators. The Journal of Physiology, 583(1), 115–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz, P. S. (2009). Tritonia swim network. Scholarpedia, 4(5), 3638.

    Article  Google Scholar 

  • Katz, P. S. (2011). Neural mechanisms underlying the evolvability of behaviour. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366(1574), 2086–2099.

    Article  PubMed  PubMed Central  Google Scholar 

  • Katz, P. S. (2018). The Tritonia swim central pattern generator. In G. Shepherd & S. Grillner (Eds.), Handbook of microcircuits (2nd ed.). Oxford University Press.

    Google Scholar 

  • Katz, P. S., & Quinlan, P. D. (2018). The importance of identified neurons in gastropod molluscs to neuroscience. Current Opinion in Neurobiology, 56, 1–7.

    Article  PubMed  Google Scholar 

  • Katz, P. S., Getting, P. A., & Frost, W. N. (1994). Dynamic neuromodulation of synaptic strength intrinsic to a central pattern generator circuit. Nature, 367, 729–731.

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki, M., & Guo, Y.-X. (1996). Neuronal circuitry for comparison of timing in the electrosensory lateral line lobe of the African wave-type electric fish Gymnarchus niloticus. Journal of Neuroscience, 16(1), 380–391.

    Article  CAS  PubMed  Google Scholar 

  • Konishi, M., & Knudsen, E. I. (1979). The oilbird: Hearing and echolocation. Science, 204(4391), 425–427.

    Article  CAS  PubMed  Google Scholar 

  • Krahe, R., & Maler, L. (2014). Neural maps in the electrosensory system of weakly electric fish. Current Opinion in Neurobiology, 24(1), 13–21.

    Article  CAS  PubMed  Google Scholar 

  • Kristan, W. B., & Katz, P. (2006). Form and function in systems neuroscience. Current Biology, 16(19), R828–R831.

    Article  CAS  PubMed  Google Scholar 

  • Kristan, W. B., Calabrese, R. L., & Friesen, W. O. (2005). Neuronal control of leech behavior. Progress in Neurobiology, 76(5), 279–327.

    Article  PubMed  Google Scholar 

  • Lee, J. H., Lewis, K. M., Moural, T. W., Kirilenko, B., Borgonovo, B., Prange, G., Koessl, M., Huggenberger, S., Kang, C., & Hiller, M. (2018). Molecular parallelism in fast-twitch muscle proteins in echolocating mammals. Science Advances, 4(9), eaat9660.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Liu, Z., Shi, P., & Zhang, J. (2010). The hearing gene Prestin unites echolocating bats and whales. Current Biology, 20(2), R55–R56.

    Article  CAS  PubMed  Google Scholar 

  • Lillvis, J. L., & Katz, P. S. (2013). Parallel evolution of serotonergic neuromodulation underlies independent evolution of rhythmic motor behavior. The Journal of Neuroscience, 33(6), 2709–2717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Z., Qi, F. Y., Zhou, X., Ren, H. Q., & Shi, P. (2014). Parallel sites implicate functional convergence of the hearing gene prestin among echolocating mammals. Molecular Biology and Evolution, 31(9), 2415–2424.

    Article  CAS  PubMed  Google Scholar 

  • Madsen, P. T., & Surlykke, A. (2013). Functional convergence in bat and toothed whale biosonars. Physiology (Bethesda), 28(5), 276–283.

    CAS  PubMed  Google Scholar 

  • Mantziaris, C., Bockemühl, T., & Büschges, A. (2020). Central pattern generating networks in insect locomotion. Developmental Neurobiology, 80(1–2), 16–30.

    Article  PubMed  Google Scholar 

  • Marcovitz, A., Turakhia, Y., Chen, H. I., Gloudemans, M., Braun, B. A., Wang, H., & Bejerano, G. (2019). A functional enrichment test for molecular convergent evolution finds a clear protein-coding signal in echolocating bats and whales. Proceedings of the National Academy of Sciences, 116(42), 21094–21103.

    Article  CAS  Google Scholar 

  • McGillivray, P., Vonderschen, K., Fortune, E. S., & Chacron, M. J. (2012). Parallel coding of first-and second-order stimulus attributes by midbrain electrosensory neurons. Journal of Neuroscience, 32(16), 5510–5524.

    Article  CAS  PubMed  Google Scholar 

  • Metzner, W., & Heiligenberg, W. (1991). The coding of signals in the electric communication of the gymnotiform fish Eigenmannia: From electroreceptors to neurons in the torus semicircularis of the midbrain. Journal of Comparative Physiology A, 169(2), 135–150.

    Article  CAS  Google Scholar 

  • Modrell, M. S., Bemis, W. E., Northcutt, R. G., Davis, M. C., & Baker, C. V. H. (2011). Electrosensory ampullary organs are derived from lateral line placodes in bony fishes. Nature Communications, 2(1), 496.

    Article  PubMed  Google Scholar 

  • Modrell, M. S., Lyne, M., Carr, A. R., Zakon, H. H., Buckley, D., Campbell, A. S., Davis, M. C., Micklem, G., & Baker, C. V. H. (2017). Insights into electrosensory organ development, physiology and evolution from a lateral line-enriched transcriptome. eLife, 6, e24197.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moen, D. S., Morlon, H., & Wiens, J. J. (2016). Testing convergence versus history: Convergence dominates phenotypic evolution for over 150 million years in frogs. Systematic Biology, 65(1), 146–160.

    Article  PubMed  Google Scholar 

  • Moore, J. M., & DeVoogd, T. J. (2017). Concerted and mosaic evolution of functional modules in songbird brains. Proceedings of the Royal Society B: Biological Sciences, 284(1854), 20170469.

    Article  PubMed Central  Google Scholar 

  • Newcomb, J. M., Sakurai, A., Lillvis, J. L., Gunaratne, C. A., & Katz, P. S. (2012). Homology and homoplasy of swimming behaviors and neural circuits in the Nudipleura (Mollusca, Gastropoda, Opisthobranchia). Proceedings of the National Academy of Sciences of the United States of Americal, 109(Suppl 1), 10669–10676.

    Article  CAS  Google Scholar 

  • Nishikawa, K. C. (2002). Evolutionary convergence in nervous systems: Insights from comparative phylogenetic studies. Brain Behavior and Evolution, 59(5–6), 240–249.

    Article  PubMed  Google Scholar 

  • Nothwang, H. G. (2016). Evolution of mammalian sound localization circuits: A developmental perspective. Progress in Neurobiology, 141, 1–24.

    Article  PubMed  Google Scholar 

  • Nowicki, J. P., Pratchett, M. S., Walker, S. P. W., Coker, D. J., & O'Connell, L. A. (2020). Gene expression correlates of social evolution in coral reef butterflyfishes. Proceedings of the Royal Society B: Biological Sciences, 287(1929), 20200239.

    Article  CAS  PubMed Central  Google Scholar 

  • O’Connell, L. A., & Hofmann, H. A. (2012). Evolution of a vertebrate social decision-making network. Science, 336(6085), 1154–1157.

    Article  PubMed  Google Scholar 

  • Oteiza, P., & Baldwin, M. W. (2021). Evolution of sensory systems. Current Opinion in Neurobiology, 71, 52–59.

    Article  CAS  PubMed  Google Scholar 

  • Pankey, M. S., Minin, V. N., Imholte, G. C., Suchard, M. A., & Oakley, T. H. (2014). Predictable transcriptome evolution in the convergent and complex bioluminescent organs of squid. Proceedings of the National Academy of Sciences of the United States of America, 111(44), E4736–E4742.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panyutina, A. A., Kuznetsov, A. N., Volodin, I. A., Abramov, A. V., & Soldatova, I. B. (2017). A blind climber: The first evidence of ultrasonic echolocation in arboreal mammals. Integrative Zoology, 12(2), 172–184.

    Article  PubMed  Google Scholar 

  • Parker, J., Tsagkogeorga, G., Cotton, J. A., Liu, Y., Provero, P., Stupka, E., & Rossiter, S. J. (2013). Genome-wide signatures of convergent evolution in echolocating mammals. Nature, 502(7470), 228–231.

    Article  CAS  PubMed  Google Scholar 

  • Rybak, I. A., Dougherty, K. J., & Shevtsova, N. A. (2015). Organization of the mammalian locomotor CPG: review of computational model and circuit architectures based on genetically identified spinal interneurons. ENeuro, 2(5).

    Google Scholar 

  • Ryczko, D., Dubuc, R., & Cabelguen, J. M. (2010). Rhythmogenesis in axial locomotor networks: An interspecies comparison. Progress in Brain Research, 187, 189–211.

    Article  PubMed  Google Scholar 

  • Sakurai, A., & Katz, P. S. (2016). The central pattern generator underlying swimming in Dendronotus iris: A simple half-center network oscillator with a twist. Journal of Neurophysiology, 116(4), 1728–1742.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakurai, A., & Katz, P. S. (2017). Artificial synaptic rewiring demonstrates that distinct neural circuit configurations underlie homologous behaviors. Current Biology, 27(12), 1721–1734.e1723.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai, A., Gunaratne, C. A., & Katz, P. S. (2014). Two interconnected kernels of reciprocally inhibitory interneurons underlie alternating left-right swim motor pattern generation in the mollusc Melibe leonina. Journal of Neurophysiology, 112(6), 1317–1328.

    Article  PubMed  Google Scholar 

  • Schnupp, J. W., & Carr, C. E. (2009). On hearing with more than one ear: Lessons from evolution. Nature Neuroscience, 12(6), 692–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher, E. L., & Carlson, B. A. (2021). Convergent mosaic brain evolution is associated with the evolution of novel electrosensory systems in teleost fishes. bioRxiv.

    Google Scholar 

  • Sherwood, W. E., Harris-Warrick, R., & Guckenheimer, J. (2011). Synaptic patterning of left-right alternation in a computational model of the rodent hindlimb central pattern generator. Journal of Computational Neuroscience, 30(2), 323–360.

    Article  PubMed  Google Scholar 

  • Shevtsova, N. A., Talpalar, A. E., Markin, S. N., Harris-Warrick, R. M., Kiehn, O., & Rybak, I. A. (2015). Organization of left-right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling. The Journal of Physiology, 593(11), 2403–2426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern, D. L. (2013). The genetic causes of convergent evolution. Nature Reviews. Genetics, 14(11), 751–764.

    Article  CAS  PubMed  Google Scholar 

  • Striedter, G. F., & Northcutt, R. G. (2019). Brains through time: A natural history of vertebrates. Oxford University Press.

    Book  Google Scholar 

  • Sukhum, K. V., Shen, J., & Carlson, B. A. (2018). Extreme enlargement of the cerebellum in a clade of teleost fishes that evolved a novel active sensory system. Current Biology, 28(23), 3857–3863.e3853.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, L. H. (1896). The tall office building artistically considered. Lippincott’s Magazine.

    Google Scholar 

  • Tamvacakis, A. N., Senatore, A., & Katz, P. S. (2018). Single neuron serotonin receptor subtype gene expression correlates with behaviour within and across three molluscan species. Proceedings of the Royal Society B: Biological Sciences, 285, 20180791.

    Article  PubMed Central  Google Scholar 

  • Thompson, A., Vo, D., Comfort, C., & Zakon, H. H. (2014). Expression evolution facilitated the convergent neofunctionalization of a sodium channel gene. Molecular Biology and Evolution, 31(8), 1941–1955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tosches, M. A. (2021). From cell types to an integrated understanding of brain evolution: The case of the cerebral cortex. Annual Review of Cell and Developmental Biology.

    Google Scholar 

  • Wang, X.-J., & Rinzel, J. (1992). Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Computation, 4(1), 84–97.

    Article  Google Scholar 

  • Wang, Y., & Yang, L. (2021). Genomic evidence for convergent molecular adaptation in electric fishes. Genome Biology and Evolution, 13(3), evab038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakon, H. H., Lu, Y., Zwickl, D. J., & Hillis, D. M. (2006). Sodium channel genes and the evolution of diversity in communication signals of electric fishes: convergent molecular evolution. Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3675–3680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakon, H. H., Zwickl, D. J., Lu, Y., & Hillis, D. M. (2008). Molecular evolution of communication signals in electric fish. The Journal of Experimental Biology, 211(Pt 11), 1814–1818.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Katz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Katz, P.S. (2023). Conclusion and Perspectives: What Convergent Evolution of Animal Forms and Functions Says About the Predictability of Evolution. In: Bels, V.L., Russell, A.P. (eds) Convergent Evolution. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-11441-0_18

Download citation

Publish with us

Policies and ethics