Skip to main content

Optimization of Radiation Parameters for Antennas Used in Cell-Based Wireless Networks

  • Conference paper
  • First Online:
Book cover Innovation and Research - A Driving Force for Socio-Econo-Technological Development (CI3 2021)

Abstract

Dead zones and interference are two of the biggest problems in cell-based wireless networks. In practice, these drawbacks are often caused, on many occasions, by the imperfect radiation parameters of the antennas that make up the base station (s). This paper describes an experimental method to optimize, or better adapt to the design, the antenna radiation parameters used in cellular wireless networks. It is proposed to install reflective shells or shields, with customized geometries, that allow redirecting the radiation lobes power of the antennas that are causing interference or that are not delivering the necessary power in any area or sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sauter, M.: From GSM to LTE-Advanced Pro and 5G: An Introduction to Mobile Networks and Mobile Broadband. John Wiley & Sons, Chichester, UK (2017)

    Book  Google Scholar 

  2. Rappaport, T.S.: Wireless Communications: Principles and Practice, vol. 2. Prentice Hall, New Jersey (1996)

    MATH  Google Scholar 

  3. Gast, M.: 802.11 Wireless Networks: The Definitive Guide. O'Reilly Media, Inc. (2005)

    Google Scholar 

  4. ARCOTEL, «Servicio Móvil Avanzado SMA,» Quito, 2018

    Google Scholar 

  5. Youssef, L., Ruichek, Y., Touahni, R.: Multi-hop communications inside cellular networks: a survey and analysis. Int. J. Electr. Electron. Eng. Telecommun. (IJEETC) 8(6), 297–306 (2019)

    Google Scholar 

  6. Agiwal, N.: Next generation 5G wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutorials 18, 1617–1655 (2016)

    Article  Google Scholar 

  7. Zhou, S., Zhao, M., Xibin, X., Wang, J., Yao, Y.: Distributed wireless communication system: a new architecture for future public wireless access. IEEE Commun. Mag. 41(3), 108–113 (2003)

    Article  Google Scholar 

  8. Sharma, A.: Joint power-domain and SCMA-based NOMA system for downlink in 5G and beyond. IEEE Commun. Lett. 23(6), 971–974 (2019)

    Article  Google Scholar 

  9. Wang, C.: Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52(2), 9122–9130 (2014)

    Google Scholar 

  10. Shafi, M.: 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. Selected Areas in Commun. 35(6), 1201–1221 (2017)

    Article  Google Scholar 

  11. EMAZE: Introducción al estádar GSM. En: Línea. Available: https://app.emaze.com/@AQZCZZRQ#Introducci%C3%B3n%20al%20est%C3%A1ndar%20GSM. Último acceso: 04 06 2021

    Google Scholar 

  12. Milligan, T.A.: Modern Antenna Design. John Wiley & Sons, Hoboken, NJ, USA (2005)

    Book  Google Scholar 

  13. Stutzman, W.L., Thiele, G.A.: Antenna Theory and Design. John Wiley & Sons (2012)

    Google Scholar 

  14. Charles, L.: Geometría Analítica. Limusa, Madrid (1980)

    Google Scholar 

  15. Rohner, M.R.D.C.: Antenna Basics. Rohde Schwarz (2015)

    Google Scholar 

  16. Giacomo, B.: Development of the fictitious sources method for stratified media and design of resonant cavities antennas. Université Paul Cézanne - Aix-Marseille III (2007)

    Google Scholar 

  17. Mohamed, E.B.: Diseño y Medición de una Wearable. Universitat Politècnica de Catalunya, Barcelona (2016)

    Google Scholar 

  18. A.H.S. Inc.: Practical Overview of Antenna Parameters. En línea. Available: https://www.ahsystems.com/articles/Practical-overview-of-antenna-parameters.php (2021)

  19. Rahmat-Samii, Y.: «Reflector antennas» de In Antenna handbook, pp. 949–1072. Springer, Boston (1988)

    Book  Google Scholar 

  20. Pdfslide: Reflectores (2021)

    Google Scholar 

  21. Valero, A.: Antenas. Universitat Politècnica de València, Valencia (2021)

    Google Scholar 

  22. Feichtner, T.: Evolutionary optimization of optical antennas. Phys. Rev. Lett. 109, 127701 (2012)

    Article  Google Scholar 

  23. I., Robinson, T.A.: Optical geometry. New Theories in Physics (1988)

    Google Scholar 

  24. Pathak, P., Burnside, W., Marhefka, R.: A uniform GTD analysis of the diffraction of electromagnetic waves by a smooth convex surface. IEEE Trans. Antennas Propag. 28(5), 631–642 (1980)

    Article  Google Scholar 

  25. Ufimtsev, P.Y.: Fundamentals of the physical theory of diffraction. John Wiley & Sons (2014)

    Google Scholar 

  26. Ansys: Antenna Design & Modeling Software. Ansys. En línea. Available: https://www.ansys.com/applications/antenna-design-and-placement (2021)

  27. Yang, D., Zhai, H., Guo, C., Li, H.: A compact single-layer wideband microstrip antenna with filtering performance. IEEE Antennas Wirel. Propag. Lett. 19(5), 801–805 (2020)

    Article  Google Scholar 

  28. Weinstein, L.A.: Electromagnetic Waves. Radio i svyaz (1988)

    Google Scholar 

  29. Someda, C.G.: Electromagnetic Waves. Crc Press (2017)

    Google Scholar 

  30. Sarkar, T.K., Ji, Z., Kim, K., Medouri, A., Salazar-Palma, M.: A survey of various propagation models for mobile communication. IEEE Antennas and Propag. Mag. 45(3), 51–82 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Zambrano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zambrano, M., Zambrano, A., Minango, J., Maya, E., Dominguez, M. (2022). Optimization of Radiation Parameters for Antennas Used in Cell-Based Wireless Networks. In: Zambrano Vizuete, M., Botto-Tobar, M., Diaz Cadena, A., Durakovic, B. (eds) Innovation and Research - A Driving Force for Socio-Econo-Technological Development. CI3 2021. Lecture Notes in Networks and Systems, vol 511. Springer, Cham. https://doi.org/10.1007/978-3-031-11438-0_5

Download citation

Publish with us

Policies and ethics