Skip to main content

Two Novel Methods for Multiple Kinect v2 Sensor Calibration

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2021)

Abstract

Camera calibration is an essential step for measuring an instrument’s accuracy by using its parameters. In this paper, we propose two methods for calibrating eight Kinect v2.0 sensors, namely, pairwise and simultaneous single-camera calibration. In the first method, an experimental setup is managed so that the eight Kinect cameras can view a 3D object on a treadmill in consecutive pairs. The novelty of this method infers pairwise calibration of eight Kinects using six steps, specifically: precalibration process, acquiring images from Kinect, exporting the parameters, generation of independent live point clouds, feeding exported parameters for point cloud matching and ensuring successful calibration through merged point clouds. In the second method, a novel octagonal model is developed to calibrate each of the eight cameras on the same experimental setup. We obtain an overall mean reprojection error of 1.37 pixels and 0.42 pixels for the first method and second method, respectively. The smallest reprojection error for the first method is reported to be 0.63 pixels and 0.27 pixels for the second method. The efficiency of the proposed methods is compared with the state-of-art techniques using the root mean square and the reprojection error metrics. We observed that the proposed methods outperform the existing techniques.

We are extremely thankful to Science and Engineering Research Board (SERB), DST, Govt. of India to support this research work. The Kinect v2.0 sensors used in our research experiment are purchased from the project funded by SERB with FILE NO: ECR/2017/000408. We would also like to extend our sincere thanks to the students of Department of Computer Science and Engineering, NIT Rourkela for their uninterrupted cooperation and participation catering to the data collection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. International Society for Optics and Photonics (1992)

    Google Scholar 

  2. Borghese, N.A., Cerveri, P.: Calibrating a video camera pair with a rigid bar. Pattern Recogn. 33(1), 81–95 (2000)

    Article  Google Scholar 

  3. Chang, W.C., Chang, W.C.: Real-time 3D rendering based on multiple cameras and point cloud. In: 2014 7th International Conference on Ubi-Media Computing and Workshops, pp. 121–126. IEEE (2014)

    Google Scholar 

  4. Chen, J., Little, J.J.: Sports camera calibration via synthetic data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2019

    Google Scholar 

  5. Córdova-Esparza, D.M., Terven, J.R., Jiménez-Hernández, H., Vázquez-Cervantes, A., Herrera-Navarro, A.M., Ramírez-Pedraza, A.: Multiple kinect v2 calibration. Automatika 57(3), 810–821 (2016)

    Article  Google Scholar 

  6. Dutta, T.: Evaluation of the kinect\(^{\rm TM}\) sensor for 3-D kinematic measurement in the workplace. Appl. Ergon. 43(4), 645–649 (2012)

    Article  Google Scholar 

  7. Gonzalez-Jorge, H., Riveiro, B., Vazquez-Fernandez, E., Martínez-Sánchez, J., Arias, P.: Metrological evaluation of Microsoft Kinect and Asus Xtion sensors. Measurement 46(6), 1800–1806 (2013)

    Article  Google Scholar 

  8. Hazra, S., Pratap, A.A., Tripathy, D., Nandy, A.: Novel data fusion strategy for human gait analysis using multiple kinect sensors. Biomed. Signal Process. Control 67, 102512 (2021)

    Article  Google Scholar 

  9. Herrera C., D., Kannala, J., Heikkilä, J.: Accurate and practical calibration of a depth and color camera pair. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011. LNCS, vol. 6855, pp. 437–445. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23678-5_52

    Chapter  Google Scholar 

  10. Liebowitz, D., Zisserman, A.: Metric rectification for perspective images of planes. In: Proceedings of 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No. 98CB36231), pp. 482–488. IEEE (1998)

    Google Scholar 

  11. Lopez, M., Mari, R., Gargallo, P., Kuang, Y., Gonzalez-Jimenez, J., Haro, G.: Deep single image camera calibration with radial distortion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  12. Nguyen, M.H., Hsiao, C.C., Cheng, W.H., Huang, C.C.: Practical 3D human skeleton tracking based on multi-view and multi-kinect fusion. Multimedia Syst. 1–24 (2021)

    Google Scholar 

  13. Staranowicz, A., Morbidi, F., Mariottini, G.: Depth-camera calibration toolbox (DCCT): accurate, robust, and practical calibration of depth cameras. In: Proceedings of the British Machine Vision Conference (BMVC) (2012)

    Google Scholar 

  14. Su, P.C., Shen, J., Xu, W., Cheung, S.C.S., Luo, Y.: A fast and robust extrinsic calibration for RGB-D camera networks. Sensors 18(1), 235 (2018)

    Article  Google Scholar 

  15. Svoboda, T., Martinec, D., Pajdla, T.: A convenient multicamera self-calibration for virtual environments. Presence Teleoper. Virtual Environ. 14(4), 407–422 (2005)

    Article  Google Scholar 

  16. Triggs, B.: Autocalibration from planar scenes. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 89–105. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055661

    Chapter  Google Scholar 

  17. Zhang, C., Zhang, Z.: Calibration between depth and color sensors for commodity depth cameras. In: Shao, L., Han, J., Kohli, P., Zhang, Z. (eds.) Computer Vision and Machine Learning with RGB-D Sensors. ACVPR, pp. 47–64. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08651-4_3

    Chapter  MATH  Google Scholar 

  18. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  19. Zhang, Z.: Camera calibration with one-dimensional objects. IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 892–899 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Hazra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hazra, S., Pisipati, M., Puhan, A., Nandy, A., Scherer, R. (2022). Two Novel Methods for Multiple Kinect v2 Sensor Calibration. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1568. Springer, Cham. https://doi.org/10.1007/978-3-031-11349-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11349-9_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11348-2

  • Online ISBN: 978-3-031-11349-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics