Abstract
Haze poses challenges in many vision-related applications. Thus, dehazing an image becomes popular among vision researchers. Available methods use various priors, deep learning models, or a combination of both to get plausible dehazing solutions. This paper reviews some recent advancements and their results on both homogeneous and non-homogeneous haze datasets. Intending to achieve haze removal for both types of haze, we propose a new architecture, developed on a convolutional neural network (CNN). The network is developed based on reformulating the atmospheric scattering phenomenon and estimating haze density to extract features for both types of haze. The haze-density estimation is supplemented by channel attention and pixel attention modules. The model is trained on perceptual loss. The quantitative and qualitative results demonstrate the efficacy of our approach on homogeneous as well as non-homogeneous haze as compared to the existing methods, developed for a particular type.
Keywords
- Dehazing
- CNN
- Homogeneous haze
- Non-homogeneous haze
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Towards perceptual image dehazing by physics-based disentanglement and adversarial training 32. https://ojs.aaai.org/index.php/AAAI/article/view/12317
Ancuti, C.O., Ancuti, C., Sbert, M., Timofte, R.: Dense-haze: a benchmark for image dehazing with dense-haze and haze-free images. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 1014–1018. IEEE (2019)
Ancuti, C.O., Ancuti, C., Timofte, R.: NH-HAZE: an image dehazing benchmark with non-homogeneous hazy and haze-free images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 444–445 (2020)
Ancuti, C.O., Ancuti, C., Timofte, R., De Vleeschouwer, C.: O-HAZE: a dehazing benchmark with real hazy and haze-free outdoor images. In: Proceedings of the IEEE Conference on computer Vision and Pattern Recognition Workshops, pp. 754–762 (2018)
Ancuti, C.O., Ancuti, C., Vasluianu, F.A., Timofte, R.: Ntire 2020 challenge on nonhomogeneous dehazing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 490–491 (2020)
Ancuti, C., Ancuti, C.O., Timofte, R., De Vleeschouwer, C.: I-HAZE: a dehazing benchmark with real hazy and haze-free indoor images. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2018. LNCS, vol. 11182, pp. 620–631. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01449-0_52
Berman, D., Avidan, S., et al.: Non-local image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1674–1682 (2016)
Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)
Chen, D., et al.: Gated context aggregation network for image dehazing and deraining. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1375–1383. IEEE (2019)
Chen, S., Chen, Y., Qu, Y., Huang, J., Hong, M.: Multi-scale adaptive dehazing network. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2051–2059 (2019). https://doi.org/10.1109/CVPRW.2019.00257
Dong, H., et al.: Multi-scale boosted dehazing network with dense feature fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2157–2167 (2020)
Dudhane, A., Aulakh, H.S., Murala, S.: RI-GAN: an end-to-end network for single image haze removal. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2014–2023 (2019). https://doi.org/10.1109/CVPRW.2019.00253
Dudhane, A., Biradar, K.M., Patil, P.W., Hambarde, P., Murala, S.: Varicolored image de-hazing. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4563–4572 (2020). https://doi.org/10.1109/CVPR42600.2020.00462
Fattal, R.: Single image dehazing. ACM Trans. Graph. (TOG) 27(3), 1–9 (2008)
Gholizadeh-Ansari, M., Alirezaie, J., Babyn, P.: Deep learning for low-dose CT denoising using perceptual loss and edge detection layer. J. Digit. Imaging 33(2), 504–515 (2020)
Guo, T., Li, X., Cherukuri, V., Monga, V.: Dense scene information estimation network for dehazing. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2122–2130 (2019). https://doi.org/10.1109/CVPRW.2019.00265
He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Kopf, J., et al.: Deep photo: Model-based photograph enhancement and viewing. ACM Trans. Graph. (TOG) 27(5), 1–10 (2008)
Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: AOD-Net: all-in-one dehazing network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4770–4778 (2017)
Liu, J., Wu, H., Xie, Y., Qu, Y., Ma, L.: Trident dehazing network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 430–431 (2020)
Mandal, S., Rajagopalan, A.: Local proximity for enhanced visibility in haze. IEEE Trans. Image Process. 29, 2478–2491 (2019)
McCartney, E.J.: Optics of the atmosphere: scattering by molecules and particles. New York (1976)
Mehra, A., Mandal, M., Narang, P., Chamola, V.: ReviewNet: a fast and resource optimized network for enabling safe autonomous driving in hazy weather conditions. IEEE Trans. Intell. Transp. Syst. 22(7), 4256–4266 (2021). https://doi.org/10.1109/TITS.2020.3013099
Namer, E., Schechner, Y.Y.: Advanced visibility improvement based on polarization filtered images. In: Polarization Science and Remote Sensing II, vol. 5888, p. 588805. International Society for Optics and Photonics (2005)
Narasimhan, S.G., Nayar, S.K.: Removing weather effects from monochrome images. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 2, p. II. IEEE (2001)
Narasimhan, S.G., Nayar, S.K.: Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003)
Nayar, S.K., Narasimhan, S.G.: Vision in bad weather. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 820–827. IEEE (1999)
Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: FFA-Net: feature fusion attention network for single image dehazing. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11908–11915 (2020)
Qu, Y., Chen, Y., Huang, J., Xie, Y.: Enhanced pix2pix dehazing network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8160–8168 (2019)
Rad, M.S., Bozorgtabar, B., Marti, U.V., Basler, M., Ekenel, H.K., Thiran, J.P.: Srobb: targeted perceptual loss for single image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2710–2719 (2019)
Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_10
Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: Instant dehazing of images using polarization. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, p. I. IEEE (2001)
Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: Polarization-based vision through haze. Appl. Opt. 42(3), 511–525 (2003)
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Tan, R.T.: Visibility in bad weather from a single image. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)
Tang, K., Yang, J., Wang, J.: Investigating haze-relevant features in a learning framework for image dehazing, pp. 2995–3002, June 2014. https://doi.org/10.1109/CVPR.2014.383
Zhang, J., Tao, D.: FAMED-Net: a fast and accurate multi-scale end-to-end dehazing network. IEEE Trans. Image Process. 29, 72–84 (2020). https://doi.org/10.1109/TIP.2019.2922837
Zhao, H., Kong, X., He, J., Qiao, Yu., Dong, C.: Efficient image super-resolution using pixel attention. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 56–72. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_3
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gajjar, M., Mandal, S. (2022). Homogeneous and Non-homogeneous Image Dehazing Using Deep Neural Network. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1567. Springer, Cham. https://doi.org/10.1007/978-3-031-11346-8_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-11346-8_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-11345-1
Online ISBN: 978-3-031-11346-8
eBook Packages: Computer ScienceComputer Science (R0)