Abstract
Deformable image registration (DIR) is a key element in adaptive radiotherapy (AR) to include anatomical modifications in the adaptive planning. In AR, daily 3D images are acquired and DIR can be used for structure propagation and to deform the daily dose to a reference anatomy. Quantifying the uncertainty associated with DIR is essential. Here, a probabilistic unsupervised deep learning method is presented to predict the variance of a given deformable vector field (DVF). It is shown that the proposed method can predict the uncertainty associated with various conventional DIR algorithms for breathing deformation in the lung. In addition, we show that the uncertainty prediction is accurate also for DIR algorithms not used during the training. Finally, we demonstrate how the resulting DVFs can be used to estimate the dosimetric uncertainty arising from dose deformation.
Keywords
- Deformable image registration
- Proton therapy
- Adaptive planning
- Uncertainty
- Deep learning
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Albertini, F., Matter, M., Nenoff, L., Zhang, Y., Lomax, A.: Online daily adaptive proton therapy. Br. J. Radiol. 93(1107), 20190594 (2020)
Amstutz, F., et al.: An approach for estimating dosimetric uncertainties in deformable dose accumulation in pencil beam scanning proton therapy for lung cancer. Phys. Med. Biol. 66(10), 105007 (2021)
Brock, K.K., McShan, D.L., Ten Haken, R., Hollister, S., Dawson, L., Balter, J.: Inclusion of organ deformation in dose calculations. Med. Phys. 30(3), 290–295 (2003)
Brock, K.K., Mutic, S., McNutt, T.R., Li, H., Kessler, M.L.: Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM radiation therapy committee task group no. 132. Med. Phys. 44(7), e43–e76 (2017)
Castillo, E., Castillo, R., Martinez, J., Shenoy, M., Guerrero, T.: Four-dimensional deformable image registration using trajectory modeling. Phys. Med. Biol. 55(1), 305 (2009)
Castillo, R., et al.: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys. Med. Biol. 54(7), 1849 (2009)
Chetty, I.J., Rosu-Bubulac, M.: Deformable registration for dose accumulation. In: Seminars in Radiation Oncology, vol. 29, pp. 198–208. Elsevier (2019)
Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces. Med. Image Anal. 57, 226–236 (2019)
Hansen, L., Heinrich, M.P.: Tackling the problem of large deformations in deep learning based medical image registration using displacement embeddings. arXiv preprint arXiv:2005.13338 (2020)
Heinrich, M.P.: Closing the gap between deep and conventional image registration using probabilistic dense displacement networks. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 50–58. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_6
Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, S.M., Schnabel, J.A.: Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 187–194. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_24
Jaffray, D.A., Lindsay, P.E., Brock, K.K., Deasy, J.O., Tomé, W.A.: Accurate accumulation of dose for improved understanding of radiation effects in normal tissue. Int. J. Radiation Oncol.* Biol.* Phys. 76(3), S135–S139 (2010)
Janssens, G., et al.: Evaluation of nonrigid registration models for interfraction dose accumulation in radiotherapy. Med. Phys. 36(9Part1), 4268–4276 (2009)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kingma, D.P., Salimans, T., Welling, M.: Variational dropout and the local reparameterization trick. Adv. Neural Inf. Process. Syst. 28 (2015)
Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2009)
Nenoff, L., et al.: Deformable image registration uncertainty for inter-fractional dose accumulation of lung cancer proton therapy. Radiother. Oncol. 147, 178–185 (2020)
Paganelli, C., Meschini, G., Molinelli, S., Riboldi, M., Baroni, G.: Patient-specific validation of deformable image registration in radiation therapy: overview and caveats. Med. Phys. 45(10), e908–e922 (2018)
Paganetti, H.: Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys. Med. Biol. 57(11), R99 (2012)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural. Inf. Process. Syst. 32, 8026–8037 (2019)
Rühaak, J.: Estimation of large motion in lung CT by integrating regularized keypoint correspondences into dense deformable registration. IEEE Trans. Med. Imaging 36(8), 1746–1757 (2017)
Schultheiss, T.E., Tomé, W.A., Orton, C.G.: It is not appropriate to “deform’’ dose along with deformable image registration in adaptive radiotherapy. Med. Phys. 39(11), 6531–6533 (2012)
Sedghi, A., Kapur, T., Luo, J., Mousavi, P., Wells, W.M.: Probabilistic image registration via deep multi-class classification: characterizing uncertainty. In: Greenspan, H., et al. (eds.) CLIP/UNSURE 2019. LNCS, vol. 11840, pp. 12–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32689-0_2
de Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143 (2019)
Zhong, H., Chetty, I.J.: Caution must be exercised when performing deformable dose accumulation for tumors undergoing mass changes during fractionated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 97(1), 182–183 (2016)
Acknowledgments
This work has received funding from the European Union’s Horizon 2020 Marie Skłodowska-Curie Actions under Grant Agreement No. 955956.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Smolders, A., Lomax, T., Weber, D.C., Albertini, F. (2022). Deformable Image Registration Uncertainty Quantification Using Deep Learning for Dose Accumulation in Adaptive Proton Therapy. In: Hering, A., Schnabel, J., Zhang, M., Ferrante, E., Heinrich, M., Rueckert, D. (eds) Biomedical Image Registration. WBIR 2022. Lecture Notes in Computer Science, vol 13386. Springer, Cham. https://doi.org/10.1007/978-3-031-11203-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-11203-4_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-11202-7
Online ISBN: 978-3-031-11203-4
eBook Packages: Computer ScienceComputer Science (R0)