Skip to main content

A Method for Image Registration via Broken Geodesics

  • 529 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13386)

Abstract

Anatomical variabilities seen in longitudinal data or inter-subject data is usually described by the underlying deformation, captured by non-rigid registration of these images. Stationary Velocity Field (SVF) based non-rigid registration algorithms are widely used for registration. However, these methods cover only a limited degree of deformations. We address this limitation and define an approximate metric space for the manifold of diffeomorphisms \(\mathcal {G}\). We propose a method to break down the large deformation into finite set of small sequential deformations. This results in a broken geodesic path on \(\mathcal {G}\) and its length now forms an approximate registration metric. We illustrate the method using a simple, intensity-based, log-demon implementation. Validation results of the proposed method show that it can capture large and complex deformations while producing qualitatively better results than state-of-the-art methods. The results also demonstrate that the proposed registration metric is a good indicator of the degree of deformation.

Keywords

  • Large deformation
  • Inter-subject registration
  • Approximate registration metric

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Avants, B.B., et al.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008)

    CrossRef  Google Scholar 

  2. Landman, B., Warfield, S.: MICCAI 2012 Workshop on Multi-atlas Labeling, vol. 2. Create Space Independent Publishing Platform, Nice (2012)

    Google Scholar 

  3. Lombaert, H., Grady, L., Pennec, X., Ayache, N., Cheriet, F.: Spectral log-demons: diffeomorphic image registration with very large deformations. Int. J. Comput. Vision 107(3), 254–271 (2013). https://doi.org/10.1007/s11263-013-0681-5

    CrossRef  Google Scholar 

  4. Lombaert, H.: Diffeomorphic Log Demons Image Registration. MATLAB Central File Exchange (2020)

    Google Scholar 

  5. Declerck, J., et al.: Automatic registration and alignment on a template of cardiac stress and rest reoriented SPECT images. IEEE Trans. Med. Imaging 16, 727–37 (1997)

    CrossRef  Google Scholar 

  6. Pennec, X., Cachier, P., Ayache, N.: Understanding the “Demon’s algorithm’’: 3D non-rigid registration by gradient descent. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 597–605. Springer, Heidelberg (1999). https://doi.org/10.1007/10704282_64

    CrossRef  Google Scholar 

  7. Ou, Y., et al.: DRAMMS: deformable registration via attribute matching and mutual-saliency weighting. Med. Image Anal. 15(4), 622–639 (2011)

    CrossRef  MathSciNet  Google Scholar 

  8. Trouvé, A.: Diffeomorphisms groups and pattern matching in image analysis. Int. J. Comput. Vision 28, 213–221 (1998)

    CrossRef  Google Scholar 

  9. A, B: Good Afternoon. Conference, pp. 4–6 (2018)

    Google Scholar 

  10. Ashburner, J., Friston, K.J.: Diffeomorphic registration using geodesic shooting and gauss-newton optimisation. Neuroimage 55, 954–967 (2011)

    CrossRef  Google Scholar 

  11. Broit, C.: Optimal registration of deformed images. University of Pennsylvania (1981)

    Google Scholar 

  12. Rueckert, D., et al.: Diffeomorphic registration using B-splines. Med. Image Comput. Comput. Assist. Interv. 9(Pt 2), 702–709 (2006)

    Google Scholar 

  13. Hello and Goodbye: Good Evening. Journal 67 (2019)

    Google Scholar 

  14. Thirion, J.-P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal. 2(3), 243–260 (1998)

    CrossRef  Google Scholar 

  15. Beg, M.F., et al.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vision 61, 139–157 (2005)

    CrossRef  Google Scholar 

  16. Hernandez, M., et al.: Registration of anatomical images using geodesic paths of diffeomorphisms parameterized with stationary vector fields. In: IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  17. Lorenzi, M., et al.: LCC-Demons: a robust and accurate symmetric diffeomorphic registration algorithm. Neuroimage 81, 470–483 (2013)

    CrossRef  Google Scholar 

  18. Pham, N., et al.: Spectral graph wavelet based nonrigid image registration. IEEE Trans. Pattern Anal. Mach. Intell., 3348–3352 (2018)

    Google Scholar 

  19. Reaungamornrat, S., et al.: MIND Demons: symmetric diffeomorphic deformable registration of MR and CT for image-guided spine surgery. IEEE Trans. Med. Imaging 35(11), 2413–2424 (2016)

    CrossRef  Google Scholar 

  20. Christensen, T., et al.: Shoving model for viscous flow. World Sci. 12, 375 (1981)

    Google Scholar 

  21. Vercauteren, T., et al.: Symmetric log-domain diffeomorphic Registration: a demons-based approach. Med. Image Comput. Comput. Assist. Interv. 11(Pt 1), 754–761 (2008)

    Google Scholar 

  22. Arsigny, V., et al.: A fast and log-euclidean polyaffine framework for locally linear registration. [Research Report]RR-5885, INRIA (2006)

    Google Scholar 

  23. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006). https://doi.org/10.1007/11866565_113

    CrossRef  Google Scholar 

  24. Pennec, X.: Bi-invariant means on Lie groups with Cartan-Schouten connections. Geom. Sci. Inf., 59–67 (2013)

    Google Scholar 

  25. Yang, X., Li, Y., Reutens, D., Jiang, T.: Diffeomorphic metric landmark mapping using stationary velocity field parameterization. Int. J. Comput. Vision 115(2), 69–86 (2015). https://doi.org/10.1007/s11263-015-0802-4

    CrossRef  MathSciNet  MATH  Google Scholar 

  26. Ou, Y., et al.: Comparative evaluation of registration algorithms in different brain databases with varying difficulty: results and insights. IEEE Trans. Med. Imag. 33, 2039–2065 (2014)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alphin J. Thottupattu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thottupattu, A.J., Sivaswamy, J., Krishnan, V.P. (2022). A Method for Image Registration via Broken Geodesics. In: Hering, A., Schnabel, J., Zhang, M., Ferrante, E., Heinrich, M., Rueckert, D. (eds) Biomedical Image Registration. WBIR 2022. Lecture Notes in Computer Science, vol 13386. Springer, Cham. https://doi.org/10.1007/978-3-031-11203-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11203-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11202-7

  • Online ISBN: 978-3-031-11203-4

  • eBook Packages: Computer ScienceComputer Science (R0)