Skip to main content

DeepSTAPLE: Learning to Predict Multimodal Registration Quality for Unsupervised Domain Adaptation

  • Conference paper
  • First Online:
Biomedical Image Registration (WBIR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13386))

Included in the following conference series:

  • 667 Accesses

Abstract

While deep neural networks often achieve outstanding results on semantic segmentation tasks within a dataset domain, performance can drop significantly when predicting domain-shifted input data. Multi-atlas segmentation utilizes multiple available sample annotations which are deformed and propagated to the target domain via multimodal image registration and fused to a consensus label afterwards but subsequent network training with the registered data may not yield optimal results due to registration errors. In this work, we propose to extend a curriculum learning approach with additional regularization and fixed weighting to train a semantic segmentation model along with data parameters representing the atlas confidence. Using these adjustments we can show that registration quality information can be extracted out of a semantic segmentation model and further be used to create label consensi when using a straightforward weighting scheme. Comparing our results to the STAPLE method, we find that our consensi are not only a better approximation of the oracle-label regarding Dice score but also improve subsequent network training results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our code is openly available on GitHub: https://github.com/multimodallearning/deep_staple.

  2. 2.

    “The word oracle [...] properly refers to the priest or priestess uttering the prediction.”. “Oracle.” Wikipedia, Wikimedia Foundation, 03 Feb 2022, en.wikipedia.org/wiki/Oracle.

References

  1. Artaechevarria, X., Munoz-Barrutia, A., Ortiz-de Solorzano, C.: Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans. Med. Imaging 28(8), 1266–1277 (2009)

    Article  Google Scholar 

  2. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48 (2009)

    Google Scholar 

  3. Castells, T., Weinzaepfel, P., Revaud, J.: SuperLoss: a generic loss for robust curriculum learning. Adv. Neural. Inf. Process. Syst. 33, 4308–4319 (2020)

    Google Scholar 

  4. Ding, Z., Han, X., Niethammer, M.: VoteNet: a deep learning label fusion method for multi-atlas segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 202–210. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_23

    Chapter  Google Scholar 

  5. Ding, Z., Han, X., Niethammer, M.: VoteNet+: an improved deep learning label fusion method for multi-atlas segmentation. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 363–367. IEEE (2020)

    Google Scholar 

  6. Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33(1), 115–126 (2006)

    Article  Google Scholar 

  7. Heinrich, M.P., Jenkinson, M., Brady, S.M., Schnabel, J.A.: Globally optimal deformable registration on a minimum spanning tree using dense displacement sampling. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 115–122. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_15

    Chapter  Google Scholar 

  8. Hempe, H., Yilmaz, E.B., Meyer, C., Heinrich, M.P.: Opportunistic CT screening for degenerative deformities and osteoporotic fractures with 3D DeepLab. In: Medical Imaging 2022: Image Processing. SPIE (2022)

    Google Scholar 

  9. Howard, A., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

    Google Scholar 

  10. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  11. Jiang, L., Zhou, Z., Leung, T., Li, L.J., Fei-Fei, L.: MentorNet: learning data-driven curriculum for very deep neural networks on corrupted labels. In: International Conference on Machine Learning, pp. 2304–2313. PMLR (2018)

    Google Scholar 

  12. Karimi, D., Dou, H., Warfield, S.K., Gholipour, A.: Deep learning with noisy labels: exploring techniques and remedies in medical image analysis. Med. Image Anal. 65, 101759 (2020)

    Article  Google Scholar 

  13. Kohl, S., et al.: A probabilistic U-Net for segmentation of ambiguous images. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  14. Liu, X., Song, L., Liu, S., Zhang, Y.: A review of deep-learning-based medical image segmentation methods. Sustainability 13(3), 1224 (2021)

    Article  Google Scholar 

  15. Liu, Z., et al.: Style curriculum learning for robust medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 451–460. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_43

    Chapter  Google Scholar 

  16. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  17. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  18. Marstal, K., Berendsen, F., Staring, M., Klein, S.: SimpleElastix: a user-friendly, multi-lingual library for medical image registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 134–142 (2016)

    Google Scholar 

  19. Rohlfing, T., Russakoff, D.B., Maurer, C.R.: Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation. IEEE Trans. Med. Imaging 23(8), 983–994 (2004)

    Article  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  22. Saxena, S., Tuzel, O., DeCoste, D.: Data parameters: a new family of parameters for learning a differentiable curriculum. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  23. Shapey, J., et al.: Segmentation of vestibular schwannoma from magnetic resonance imaging: an open annotated dataset and baseline algorithm. The Cancer Imaging Archive (2021)

    Google Scholar 

  24. Siebert, H., Hansen, L., Heinrich, M.P.: Fast 3D registration with accurate optimisation and little learning for learn2Reg 2021. arXiv preprint arXiv:2112.03053 (2021)

  25. Wang, H., Yushkevich, P.: Multi-atlas segmentation with joint label fusion and corrective learning-an open source implementation. Front. Neuroinform. 7, 27 (2013)

    Google Scholar 

  26. Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23(7), 903–921 (2004)

    Article  Google Scholar 

  27. Yan, W., et al.: The domain shift problem of medical image segmentation and vendor-adaptation by Unet-GAN. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 623–631. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_69

    Chapter  Google Scholar 

  28. Zhang, Z., Zhang, H., Arik, S.O., Lee, H., Pfister, T.: Distilling effective supervision from severe label noise. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9294–9303 (2020)

    Google Scholar 

  29. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Weihsbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weihsbach, C., Bigalke, A., Kruse, C.N., Hempe, H., Heinrich, M.P. (2022). DeepSTAPLE: Learning to Predict Multimodal Registration Quality for Unsupervised Domain Adaptation. In: Hering, A., Schnabel, J., Zhang, M., Ferrante, E., Heinrich, M., Rueckert, D. (eds) Biomedical Image Registration. WBIR 2022. Lecture Notes in Computer Science, vol 13386. Springer, Cham. https://doi.org/10.1007/978-3-031-11203-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11203-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11202-7

  • Online ISBN: 978-3-031-11203-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics