Abstract
In recent years, learning-based image registration methods have gradually moved away from direct supervision with target warps to self-supervision using segmentations, producing promising results across several benchmarks. In this paper, we argue that the relative failure of supervised registration approaches can in part be blamed on the use of regular U-Nets, which are jointly tasked with feature extraction, feature matching, and estimation of deformation. We introduce one simple but crucial modification to the U-Net that disentangles feature extraction and matching from deformation prediction, allowing the U-Net to warp the features, across levels, as the deformation field is evolved. With this modification, direct supervision using target warps begins to outperform self-supervision approaches that require segmentations, presenting new directions for registration when images do not have segmentations. We hope that our findings in this preliminary workshop paper will re-ignite research interest in supervised image registration techniques. Our code is publicly available from https://github.com/balbasty/superwarp.
Keywords
- Image registration
- Optical flow
- Supervised learning
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26, 3142–3155 (2017)
Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38, 295–307 (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of CVPR, pp. 3431–3440 (2015)
Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of CVPR (2015)
Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of CVPR, pp. 2414–2423 (2016)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
de Vos, B.D., Berendsen, F.F., Viergever, M.A., Staring, M., Išgum, I.: End-to-end unsupervised deformable image registration with a convolutional neural network. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 204–212. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_24
Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: An unsupervised learning model for deformable medical image registration. In: Proceedings of CVPR (2018)
Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning for fast probabilistic diffeomorphic registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 729–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_82
Mok, T.C.W., Chung, A.C.S.: Fast symmetric diffeomorphic image registration with convolutional neural networks. In: Proceedings of CVPR (2020)
Cao, X., et al.: Deformable image registration based on similarity-steered CNN regression. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 300–308. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_35
Rohé, M.-M., Datar, M., Heimann, T., Sermesant, M., Pennec, X.: SVF-Net: learning deformable image registration using shape matching. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 266–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_31
Yang, X., Kwitt, R., Styner, M., Niethammer, M.: Quicksilver: fast predictive image registration – a deep learning approach. Neuroimage 158, 378–396 (2017)
Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)
Sun, D., Roth, S., Black, M.J.: A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis. 106, 115–137 (2014)
Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63, 75–104 (1996)
Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. Int. J. Comput. Vis. 67, 141–158 (2006)
Roth, S., Lempitsky, V., Rother, C.: Discrete-continuous optimization for optical flow estimation. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds.) Statistical and Geometrical Approaches to Visual Motion Analysis. LNCS, vol. 5604, pp. 1–22. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03061-1_1
Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L 1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) Pattern Recognition, pp. 214–223. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74936-3_22
Sun, D., Roth, S., Lewis, J.P., Black, M.J.: Learning Optical Flow. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 83–97. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_7
Nagel, H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 8, 565–593 (1986)
Wedel, A., Cremers, D., Pock, T., Bischof, H.: Structure- and motion-adaptive regularization for high accuracy optic flow. In: Proceedings of ICCV, pp. 1663–1668 (2009)
Zimmer, H., Bruhn, A., Weickert, J.: Optic flow in harmony. Int. J. Comput. Vis. 93, 368–388 (2011)
Zimmer, H., et al.: Complementary optic flow. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 207–220. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03641-5_16
Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: Proceedings of CVPR, pp. 2432–2439 (2010)
Werlberger, M., Pock, T., Bischof, H.: Motion estimation with non-local total variation regularization. In: Proceedings of CVPR, pp. 2464–2471 (2010)
Ranftl, R., Bredies, K., Pock, T.: Non-local total generalized variation for optical flow estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 439–454. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_29
Krähenbühl, P., Koltun, V.: Efficient nonlocal regularization for optical flow. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 356–369. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_26
Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3, 492–526 (2010)
Liu, C., Yuen, J., Torralba, A.: Sift flow: dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 33, 978–994 (2011)
Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 500–513 (2011)
Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: DeepFlow: large displacement optical flow with deep matching. In: ICCV, pp. 1385–1392 (2013)
Hu, Y., Song, R., Li, Y.: Efficient coarse-to-fine patchmatch for large displacement optical flow. In: Proceedings of CVPR, pp. 5704–5712 (2016)
Lempitsky, V., Rother, C., Roth, S., Blake, A.: Fusion moves for markov random field optimization. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1392–1405 (2010)
Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.: An improved algorithm for TV-L1 optical flow. In: Proceedings of Statistical and Geometrical Approaches to Visual Motion Analysis, pp. 23–45 (2009)
Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: Proceedings of CVPR (2015)
Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: Proceedings of CVPR (2017)
Sun, D., Yang, X., Liu, M.-Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of CVPR (2018)
Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: Proceedings of CVPR (2017)
Yu, J.J., Harley, A.W., Derpanis, K.G.: Back to basics: unsupervised learning of optical flow via brightness constancy and motion smoothness. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 3–10. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_1
Liu, P., Lyu, M., King, I., Xu, J.: SelFlow: self-supervised learning of optical flow. In: Proceedings of CVPR (2019)
Wang, Y., Yang, Y., Yang, Z., Zhao, L., Wang, P., Xu, W.: Occlusion aware unsupervised learning of optical flow. In: Proceedings of CVPR (2018)
Hur, J., Roth, S.: Iterative residual refinement for joint optical flow and occlusion estimation. In: Proceedings of CVPR (2019)
Liu, P., King, I., Lyu, M.R., Xu, J.: DDFlow: learning optical flow with unlabeled data distillation. In: Proceedings of AAAI Conference on Artificial Intelligence, vol. 33, pp. 8770–8777 (2019)
Ashburner, J.: A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113 (2007)
Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1987)
Pratt, W.K., Kane, J., Andrews, H.C.: Hadamard transform image coding. Proc. IEEE. 57, 58–68 (1969)
Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Proceedings of MLR, pp. 562–570 (2015)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of ICLR (2017)
Fischl, B.: FreeSurfer. NeuroImage. 62, 774–781 (2012)
Hoffmann, M., Billot, B., Greve, D.N., Iglesias, J.E., Fischl, B., Dalca, A.V.: SynthMorph: learning contrast-invariant registration without acquired images. IEEE Trans. Med. Imaging 41, 543–558 (2021)
Acknowledgments
Support for this research provided in part by the BRAIN Initiative Cell Census Network grant U01MH117023, NIBIB (P41EB015896, 1R01EB023281, R01EB-006758, R21EB018907, R01EB019956, P41EB030006, P41EB028741), NIA (1R-56AG064027, 1R01AG064027, 5R01AG008122, R01AG016495, 1R01AG070988), NIMH (R01MH123195, R01MH121885, 1RF1MH123195), NINDS (R01NS05–25851, R21-NS072652, R01NS070963, R01NS083534, 5U01NS086625, 5U24NS-10059103, R01NS105820), ARUK (IRG2019A-003), and was made possible by resources from Shared Instrumentation Grants 1S10RR023401, 1S10RR019307, and 1S10-RR023043. Additional support was provided by the NIH Blueprint for Neuroscience Research (5U01-MH093765), part of the multi-institutional Human Connectome Project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Young, S.I., Balbastre, Y., Dalca, A.V., Wells, W.M., Iglesias, J.E., Fischl, B. (2022). SuperWarp: Supervised Learning and Warping on U-Net for Invariant Subvoxel-Precise Registration. In: Hering, A., Schnabel, J., Zhang, M., Ferrante, E., Heinrich, M., Rueckert, D. (eds) Biomedical Image Registration. WBIR 2022. Lecture Notes in Computer Science, vol 13386. Springer, Cham. https://doi.org/10.1007/978-3-031-11203-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-11203-4_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-11202-7
Online ISBN: 978-3-031-11203-4
eBook Packages: Computer ScienceComputer Science (R0)