Skip to main content

Part of the book series: Earth Systems Data and Models ((ESDM,volume 5))

  • 311 Accesses

Abstract

This chapter describes technical instrumentation for gravity measurements. Various types of absolute ballistic gravimeters intended for ground-based measurements of the absolute free-fall acceleration are described. The focus is on the most recently used laser-interferometric absolute gravimeters. Regular international comparisons of absolute gravimeters are considered. Applications of ground-based absolute gravimetry using ballistic gravimeters for the national and international geodetic projects such as the Global Geodetic Observing System of the International Association of Geodesy are described. Development and operation of the Russian Chekan and GT-2 series mobile gravimeters are addressed.

L. Elinson—Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arias F, Jiang Z, Robertsson L, Vitushkin L et al (2012) Final report of key comparison CCM. G-K1: International comparison of absolute gravimeters ICAG2009. Metrologia 49(1A), Tech Suppl 07011

    Google Scholar 

  • Arnautov GP, Gik LD, Kalish EN, Koronkevich VP, Malyshev IS, Nesterikhin YuE, Stus YuF, Tarasov GG (1974) High-precision laser gravimeter. Appl Opt 13(2):310–313

    Article  Google Scholar 

  • Arnautov GP, Kalish EN, Smirnov MG, Stus YuF, Tarasyuk VG (1988) Ballistic gravimeter. Author's Certificate SSSR SU 1563432, G 01 V 7/14, 01/08/1988

    Google Scholar 

  • Atakov AI, Lokshin BS, Prudnikov AN, Shkatov MY (2010) Results of integrated geophysical survey at the Ushakovsko-Novosemel’skaya prospective area in the Kara Sea. In: IAG symposium on terrestrial gravimetry: static and mobile measurements (TG-SMM2010). Elektropribor, St. Petersburg, pp 33–35

    Google Scholar 

  • Barthelmes F, Petrovic S, Pflug H (2013) First experiences with the GFZ new mobile gravimeter Chekan-AM, Paper abstracts of IAG symposium on terrestrial gravimetry: static and mobile measurements (TG-SMM2013). Elektropribor, St. Petersburg, p 18

    Google Scholar 

  • Baumann H, Klingele EE, Marson I (2012) Absolute airborne gravimetry: a feasibility study. Geophysical prospecting, March 2012, pp 361–372

    Google Scholar 

  • Berezin VB, Berezin VV, Tsitsulin AK, Sokolov AV (2004) Adaptive image reading in an astronomical system on a matrix CCD. Izvestiya vysshykh uchebnykh zavedenii, Radioelektronika 4:36–45

    Google Scholar 

  • Berzhitsky VN, Ilyin VN, Smoller YL, Yurist SS (1999) Analog-to-digital converter. Patent of the Russian Federation no. 2168269 dated 12/23/1999

    Google Scholar 

  • Berzhitsky VN, Ilyin VN, Smoller YL, Cherepanov VA, Yurist SS (2000) Three-axis gyrostabilizer. Patent of the Russian Federation no. 2157966 dated 01/17/2000

    Google Scholar 

  • Berzhitsky VN, Bolotin YV, Golovan AA, Iljin VN, Parusnikov NA, Smoller YL, Yurist SS (2002) GT-1A inertial gravimeter system. Results of flight tests. Center of Applied Research Publishing House, Faculty of mechanics and mathematics, Moscow State University, Moscow

    Google Scholar 

  • Bikeeva MM, Smirnova LA, Sokolov AV (2007) Features of the geophysical studies using a marine gravimetric system. In: 8 konferentsiya molodykh uchenykh Navigatsiya i upravlenie dvizheniem (8th Conference of Young Scientists Navigation and Motion Control). Elektropribor, St. Petersburg, pp 162–167

    Google Scholar 

  • Blazhnov BA, Nesenyuk LP, Elinson LS (1994) Eliminating the effect of gravitational field smoothing in processing the readings of a damped airborne gravimeter. In: Proceedings of the international conference shipborne and airborne gravimetry 94, St. Petersburg

    Google Scholar 

  • Blazhnov BA, Nesenyuk LP, Peshekhonov VG, Sokolov AV, Elinson LS, Zheleznyak LK (2002) Integrated mobile gravimetric system: development and test results. In: Volfson GB, Peshekhonov VG (eds), Primenenie graviinertsial’nykh tekhnologii v geofizike (Application of Graviinertial Technologies in Geophysics), St. Petersburg, pp 33–44

    Google Scholar 

  • Boedecker G (2002) World gravity standards—present status and future challenges. Metrologia 39(5):429–433

    Article  Google Scholar 

  • Bordé CJ (2002) Atomic clocks and inertial sensors. Metrologia 39(5):435–463

    Article  Google Scholar 

  • Bronshtein IG, Livshits IL, Elinson LS, Gerasimova NL, Sokolov AV (2001) Quartz Gravimeter: Patent no. 2171481 of the Russian Federation: MPK G01V7/02/ appl 03.02.2000; pub 27/07/2001

    Google Scholar 

  • Canuteson EL, Zumberge MA (1996) Fiber-optic extrinsic Fabry-Perot vibration isolated interferometer for use in absolute gravity meters. Appl Opt 35(19):3500–3505

    Article  Google Scholar 

  • Chelpanov IB, Nesenyuk LP, Braginsky MV (1978) Raschet kharakteristik navigatsionnykh giropriborov (Calculation of Characteristics of Navigation Gyrodevices). Sudostroenie, Leningrad

    Google Scholar 

  • Cook AH (1965) The absolute determination of the acceleration due to gravity. Metrologia 1(3):84–114

    Article  Google Scholar 

  • Crossley D, Vitushkin LF, Wilmes H (2013) Global reference system for determination of the Earth gravity field: from the Potsdam system to the Global Geodynamics Project and further to the international system of fundamental absolute gravity stations. Trudy Instituta Prikladnoi Astronomii RAN 27:333–338

    Google Scholar 

  • Dehlinger P (1978) Marine gravity, Amsterdam

    Google Scholar 

  • Drobyshev NV, Koneshov VN, Koneshov IV, Solov’ev VN (2011) Development of an aircraft laboratory and a procedure for airborne gravimetric surveys in Arctic conditions, Vestnik Permskogo universiteta, Geologiya Series, no 3, pp 37–50

    Google Scholar 

  • Forsberg R, Olesen A, Einarsson I (2013) Airborne gravimetry for geoid determination with Lacoste Romberg and Chekan gravimeters. In: IAG symposium on terrestrial gravimetry: static and mobile measurements (TG-SMM2013). Elektropribor, St. Petersburg, pp 22–28

    Google Scholar 

  • Francis O, Baumann H, Volarik T, Rothleitner C (2014) The European comparison of absolute gravimeters 2011 (ECAG-2011) in Walferdange, Luxembourg: Results and recommendations. Metrologia 50(3):257–268

    Article  Google Scholar 

  • Francis O, Baumann H, Ullrich C et al (2015) CCM. G-K2 key comparison. Metrologia 52(1A) Tech Suppl 07009

    Google Scholar 

  • Germak A, Desogus S, Origlia C (2002) Interferometer for the IMGC rise-and-fall absolute gravimeter. Metrologia 39(5):471–475

    Article  Google Scholar 

  • Gillot P, Francis O, Landragin A, Pereira Dos Santos F, Merlet S (2014) Stability comparison of two gravimeters: optical versus atomic interferometers. Metrologia 51(5):L15–L17

    Google Scholar 

  • Ilyin VN, Volnyansky VN, Nikitin VP, Smoller YL, Yurist SS (1993) Gravimeter for measuring gravity from moving vehicles. Patent of the Russian Federation No. 2056643 dated 07/09/1993

    Google Scholar 

  • Jiang Z, Pálinkáš V, Arias FE, Liard J, Meriet S, Vitushkin L et al (2012) The 8th international comparison of absolute gravimeters 2009: The first key comparison (CCM.GK1) in the field of absolute gravimetry. Metrologia 49(6):666–684

    Google Scholar 

  • Koneshov VN, Bolotin YV, Golovan AA, Smoller YL, Yurist SS, Fedorova IP, Hevison W, Richter T, Greenbaum J, Young D, Blankenship D (2013a) Using airborne gravimeter GT-2A in polar areas. In: IAG symposium on terrestrial gravimetry: static and mobile measurements (TG-SMM2013a). Elektropribor, St. Petersburg, pp 36–40

    Google Scholar 

  • Koneshov VN, Koneshov IV, Klevtsov VV, Makushin AV, Smoller YL, Yurist SS, Bolotin YV, Golovan AA (2013b) An approach to refined mapping of the anomalous gravity field in the Earth’s polar caps. Izvestiya, Phys Solid Earth 49(1)):77–79

    Google Scholar 

  • Koneshov VN, Nepoklonov VB, Sermyagin RA, Lidovskaya EA (2013c) Modern global Earth’s gravity field models and their errors. Gyroscopy Navig 4(3):147–155

    Google Scholar 

  • Kontarovich RS (2015) Aerogeophysica Inc Company: 45 years in service of the national geology. Razvedka i okhrana nedr 12:3–6

    Google Scholar 

  • Kontarovich RS, Babayants PS (2011) Airborne geophysics: An effective tool to solve geological prospecting problems. Razvedka i okhrana nedr 7:3–7

    Google Scholar 

  • Kovrizhnykh PN, Shagirov BB (2013) Marine gravity survey of the Kazakhstan sector of the Caspian Sea. In: IAG symposium on terrestrial gravimetry: static and mobile measurements (TG-SMM2013). Elektropribor, St. Petersburg, pp 59–62

    Google Scholar 

  • Kovrizhnykh PN, Shagirov BB, Zhunusov IE, Saurykov ZZ (2013a) Gravity surveys in the Caspian Sea Kazakhstan transition zone. In: IAG symposium on terrestrial gravimetry: static and mobile measurements (TG-SMM2013). Elektropribor, St. Petersburg, pp 73–76

    Google Scholar 

  • Kovrizhnykh PN, Shagirov BB, Yurist SS, Bolotin YV, Saurykov Z, Karsenov T et al. (2013b) Marine surveys in the Caspian Sea using GT-2M, Chekan-AM and LR gravimeters: accuracy comparison. Geol Protect Mineral Resour 4:58–62

    Google Scholar 

  • Kovrizhnykh PN, Saurykov ZZ, Shagirov BB, Paydin MO (2016) Experience of airborne gravimetric surveys in Kazakhstan upland conditions. In: 4th IAG symposium on terrestrial gravimetry: static and mobile measurements (TG-SMM2016). Elektropribor, St. Petersburg, pp 44–52

    Google Scholar 

  • Krasnov AA (2007) Results of bench and field tests of the airborne gravimeter gyrostabilizer. In: 9 konferentsiya molodykh uchenykh “Navigatsiya i upravlenie dvizheniem” (9th Conference of Young Scientists “Navigation and Motion Control”). Elektropribor, St. Petersburg, pp 26–33

    Google Scholar 

  • Krasnov AA, Sokolov AV (2009) Development and implementation of airborne gravimetric measurement processing methods. In: Materialy X konferentsii molodykh uchenykh “Navigatsiya i upravlenie dvizheniem” (10th Conference of Young Scientists “Navigation and Motion Control”). Concern CSRI Elektropribor, St. Petersburg

    Google Scholar 

  • Krasnov AA, Odintsov AA, Semenov IV (2010) Gyro stabilization system of a gravimeter. Gyroscopy and Navigation 1:191–200

    Google Scholar 

  • Krasnov AA, Sokolov AV, Elinson LS (2014a) Operational experience with the Chekan-AM gravimeters. Gyroscopy Navig 5(3):179–183

    Google Scholar 

  • Krasnov AA, Sokolov AV, Elinson LS (2014b) A new air-sea shelf gravimeter of the Chekan series. Gyroscopy Navig 5(3):129–135

    Google Scholar 

  • Krasnov AA, Sokolov AV, Evstifeev MI, Starosel’tseva IM, Elinson LS, Zheleznyak LK, Koneshov VN (2014c) A new generation of gravimetric sensors. Meas Tech 57(9):967–972

    Google Scholar 

  • Lygin VA (2010) Gravity surveys in transition zones with the use of hovercraft. In: IAG symposium on terrestrial gravimetry: static and mobile measurements (TG-SMM2010). Elektropribor, St. Petersburg, pp 47–49

    Google Scholar 

  • Logozinsky VN, Solomatin VA (1996) Fiber-optic gyroscopes for industrial use. Giroskopiya i Navigatsiya 4:27–31

    Google Scholar 

  • Matveev VA, Podchezertsev VP, Fateev VV (2005) Giroskopicheskie stabilizatory na dinamicheski nastraivaemykh giroskopakh (Gyroscopic Stabilizers on Dynamically Tuned Gyroscopes). MGTU im. N.E. Baumana, Moscow

    Google Scholar 

  • Merlet S, Gouët JL, Bodart Q, Clairon A, Landragin A, Pereira dos Santos F, Rouchon P (2009) Operating an atom interferometer beyond its linear range. Metrologia 46(1):87–94

    Google Scholar 

  • Mogilevsky VE, Kontarovich OR (2011) Airborne gravimetry: an innovative technology in geophysics. Razvedka i okhrana nedr 7:7–10

    Google Scholar 

  • Mogilevsky VE, Kaplun DV, Kontarovich OR, Pavlov SA (2010) Airborne gravity surveys in Aerogeophysica Inc. In: IAG symposium on terrestrial gravimetry: static and mobile measurements (TG-SMM2010). Elektropribor, St. Petersburg, pp 42–46

    Google Scholar 

  • Mogilevsky VE, Pavlov SA, Kontarovich OR, Brovkin GI (2015a) Features of airborne geophysical surveys in high latitudes. Razvedka i okhrana nedr 12:6–10

    Google Scholar 

  • Mogilevsky VE, Brovkin GI, Kontarovich OR (2015b) Accomplishments, features, and problems of airborne gravimetry. Razvedka i okhrana nedr 12:16–25

    Google Scholar 

  • Nesenyuk LP, Elinson LS (1995) The experience in carrying out a detailed marine gravimetric survey. Giroskopiya i Navigatsiya 4:60–67

    Google Scholar 

  • Niebauer TM, Hollander WJ, Faller JE (1994) Absolute gravity in-line measuring apparatus incorporating improved operating features, United States Patent #5,351,122, Sept 27, 1994

    Google Scholar 

  • Niebauer TM, Sasagawa GS, Faller JE, Hilt R, Klopping F (1995) A new generation of absolute gravimeters. Metrologia 32(3):159–180

    Article  Google Scholar 

  • Orlov OA, Vitushkin LF (2010) A compact green laser for absolute ballistic gravimeter. In: IAG symposium on terrestrial gravimetry: static and mobile measurements (TG-SMM2010). Elektropribor, St. Petersburg

    Google Scholar 

  • Panteleev VL (1983) Osnovy morskoi gravimetrii (Fundamentals of Marine Gravimetry). Nedra, Moscow

    Google Scholar 

  • Pamyati professora L.P. Nesenyuka (2010) Izbrannye trudy i vospominaniya (In Memory of Professor L.P. Nesenyuk. Selected Papers and Memoirs). CSRI Elektropribor, St. Petersburg

    Google Scholar 

  • Peshekhonov VG, Sokolov AV, Elinson LS, Krasnov AA (2015) A new air-sea gravimeter: development and test results. In: 12th St. Petersburg international conference on integrated navigation systems. Elektropribor, St. Petersburg, pp 173–179

    Google Scholar 

  • Peshekhonov VG, Sokolov AV, Zheleznyak LK, Bereza AD, Krasnov AA (2020) Role of navigation technologies in mobile gravimeters development. Gyroscopy Navig 11(1):2–12

    Article  Google Scholar 

  • Peters A, Chung KY, Chu S (2001) High-precision gravity measurements using atom interferometry. Metrologia 38:25–61

    Article  Google Scholar 

  • Popov EI (1959) Quartz gravimeter for marine observations. Trudy IFZ AN SSSR (Trans of the Institute of Physics of the Earth of The Russian Academy of Sciences) 8:32–41

    Google Scholar 

  • Richter TG, Greenbaum JS, Young DA, Blankenship DD, Hewison WQ, Tuckett H (2013) University of Texas airborne gravimetry in Antarctica, 2008 to 2013. In: Paper abstracts of IAG symposium on terrestrial gravimetry: static and mobile measurements (TG-SMM2013). Elektropribor, St. Petersburg, p 13

    Google Scholar 

  • Seleznev VP (1967) Navigatsionnye ustroistva (Navigation Devices). Oborongiz, Moscow

    Google Scholar 

  • Smoller YL (2002) Mechanics, control and processing algorithms in the inertial-gravimetric aerial complex. Cand Sci Dissertation, Moscow

    Google Scholar 

  • Smoller YL, Yurist SS, Fedorova IP, Bolotin YV, Golovan AA, Koneshov VN, Hevison W, Richter T, Greenbaum J, Young D, Blankenship D (2013) Using airborne gravimeter GT-2A in polar areas. In: IAG symposium on terrestrial gravimetry: static and mobile measurements (TG-SMM2013). Elektropribor, St. Petersburg, pp 36–40

    Google Scholar 

  • Smoller YL, Yurist SS, Golovan AA, Yakushik LY (2015) Using a multiantenna GPS receiver in the airborne gravimeter GT-2a for surveys in polar areas. Gyroscopy Navig 6(4):299–304

    Article  Google Scholar 

  • Smoller YL, Yurist SS, Golovan AA, Iakushyk LY, Hewison YW (2016) Using quasicoordinates in software of multi-antenna GPS receivers and airborne gravimeter GT-2A for surveys in Polar Areas, In: 4th IAG symposium on terrestrial gravimetry: static and mobile measurements (TG-SMM2016). Elektropribor, St. Petersburg

    Google Scholar 

  • Sokolov AV (2003) Mobile gravimeter. Prib Tekh Eksp 46(1):165–166

    Google Scholar 

  • Sokolov AV, Usov SV, Elinson LS (2000) The experience of conducting gravity surveys in the conditions of marine seismic operations. Giroskopiya I navigatsiya 1:39–50

    Google Scholar 

  • Sokolov AV (2004) Evaluating the position of the optical signal of a known shape. In: 6 konferentsiya molodykh uchenykh “Navigatsiya i upravlenie dvizheniem” (6th Conference of Young Scientists “Navigation and Motion Control”). Elektropribor, St. Petersburg, pp 248–254

    Google Scholar 

  • Sokolov AV, Krasnov AA, Elinson LS, Vasil’ev VA, Zheleznyak LK (2015) Calibration of the Chekan-AM gravimeter by a tilting method. Gyroscopy Navig 6(4):288–293

    Google Scholar 

  • Sokolov AV, Krasnov AA, Alekseenko AS, Stus YF, Nazarov EO, Sizikov IS (2017) Measuring absolute gravity aboard moving vehicles. Gyroscopy Navig 8(4):287–294

    Article  Google Scholar 

  • Sokolov AV, Staroseltseva IM, Elinson LS (2008) Gravity measurement device: Pat. No. 2377611 Russian Federation: IPC G01V7/00/appl. 04/22/2008; pub. 12/27/2009

    Google Scholar 

  • Sokolov AV, Krasnov AA, Konovalov AB (2021) Automation of mobile gravimeter quartz elastic system manufacturing technology. Gyroscopy Navig 12(2):138–146

    Article  Google Scholar 

  • Vitouchkine AL, Faller JE (2002) Measurement results with a small cam-driven absolute gravimeter. Metrologia 39(2):465–469

    Article  Google Scholar 

  • Vitushkin LF (2011) Measurement standards in gravimetry. Gyroscopy Navig 2(3):184–191

    Article  Google Scholar 

  • Vitushkin LF, Orlov OA (2011) Absolute ballistic gravimeter. Patent for invention no. 2475786, May 06, 2011

    Google Scholar 

  • Vitushkin LF, Orlov OA (2014) Absolute ballistic gravimeter ABG-VNIIM-1 developed at D.I. Mendeleev Research Institute for Metrology. Giroskopiya i navigatsiya 2:95–100

    Google Scholar 

  • Vitushkin LF, Orlov OA, Germak A, D’Agostino G (2012) Laser displacement interferometers with subnanometer resolution in absolute ballistic gravimeters. Meas Tech 55(3):221–228

    Article  Google Scholar 

  • Zheleznyak LK, Popov EI (1982) Principles of construction and optimal design of a modern marine gravimeter. In: Fiziko-tekhnicheskaya gravimetriya (Physical and Technical Gravimetry). Nauka, Moscow, pp 43–60

    Google Scholar 

  • Zheleznyak LK, Popov EI (1984) Uprugaya sistema tipa USG. Pribory i metody obrabotki graviinertsial'nykh izmerenii (Elastic system of the gravimeter. Devices and methods for processing graviinertial measurements). IFZ, AN SSSR, Moscow, pp 54–66

    Google Scholar 

  • Zheleznyak LK, Markov GS, Romanishin PA (1983) Experimental production gravimetric survey in the Black Sea. In: Graviinertsial’nye issledovaniya (Gravi-Inertial Studies). IFZ AN SSSR, Moscow, pp 35–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Krasnov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vitushkin, L. et al. (2022). Instruments for Measuring Gravity. In: Peshekhonov, V.G., Stepanov, O.A. (eds) Methods and Technologies for Measuring the Earth’s Gravity Field Parameters. Earth Systems Data and Models, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-031-11158-7_1

Download citation

Publish with us

Policies and ethics