Skip to main content

Investigation of Mechanical Properties of Woven Hybrid Metallic Fabric

  • Conference paper
  • First Online:
2nd International Conference on Industrial Applications of Adhesives 2022

Part of the book series: Proceedings in Engineering Mechanics ((PEM))

  • 155 Accesses

Abstract

In this study, main purpose was to produce hybrid metallic fabrics by using traditional weaving methods. The weaving process was completed by using aluminum wire (Al 1050 H14) and polyethylene fishing line with 0.2 mm thicknesses. Three types of hybrid laminated composite specimens with different orientations were prepared for comparison. Specimens were produced which included hybrid metallic fabrics woven parallel to the weft direction (HMFX), parallel to the warp direction (HMFY), and fishing line fabric (FLF) only, due to the reason that FLF had isotropic structure. Each layer was bonded by using epoxy film adhesive, FM 73 M between Al 5005 H34 sheets. Acquired laminated hybrid composites were cured in a specially designed die by applying pressure and heat using a heat controlled hydraulic press. After the curing process was completed, specimens were cut out according to ASTM D3039 standard for tensile testing. highest values were found in a hybrid metallic fabric with aluminum wires woven parallel to the weft axis (HMFX). Also, all the composites produced were around 63% lighter than the AL 5005 H34 specimen with the same thickness as the composite specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mann, G.S., Singh, L.P., Kumar, P., Singh, S.: Green composites: a review of processing technologies and recent applications. J. Thermoplast. Compos. Mater. 33, 1145–1171 (2020). https://doi.org/10.1177/0892705718816354

    Article  Google Scholar 

  2. Wang, M., Lawal, A.: Special issue on process and mechanical engineering for carbon capture and transport. P. I. Mech. Eng. E-J Pro. 227, 87–88 (2013). https://doi.org/10.1177/0954408913485515

    Article  Google Scholar 

  3. Liu, C.H., Hsieh, W.H., Chang, Z.Y., Tzou, G.Y., Hanson, S.G., Hwang, Y.L.: Recent advances in precision machinery and manufacturing technology. Adv. Mech. Eng. 6, 508592 (2014). https://doi.org/10.1155/2014/508592

    Article  Google Scholar 

  4. Ravishankar, B., Nayak, S.K., Kader, M.A.: Hybrid composites for automotive applications–a review. J. Reinf. Plast. Compos. 38, 835–845 (2019). https://doi.org/10.1177/0731684419849708

    Article  Google Scholar 

  5. Shabaridharan, K., Bhattacharyya, A.: Metallic fibers for composite applications. In: Rana, S., Fanguerio, R. (eds.) Fibrous and Textile Materials for Composite Applications, pp. 205–230. Springer, Singapore (2016)

    Chapter  Google Scholar 

  6. Winkelmann, J., Shamsuyeva, M., Endres, H.J.: Hybrid fabrics for use in bio-based composites for technical applications. Mater. Today: Proc. 31, S263–S268 (2020). https://doi.org/10.1016/j.matpr.2019.12.097

    Article  Google Scholar 

  7. Suthar, J., Patel, K.M.: Processing issues, machining, and applications of aluminum metal matrix composites. Mater. Manuf. Process. 33, 499–527 (2018). https://doi.org/10.1080/10426914.2017.1401713

    Article  Google Scholar 

  8. Samal, P., Vundavilli, P.R., Meher, A., Mahapatra, M.M.: Recent progress in aluminum metal matrix composites: a review on processing, mechanical and wear properties. J. Manuf. Process. 59, 131–152 (2020). https://doi.org/10.1016/j.jmapro.2020.09.010

    Article  Google Scholar 

  9. Mysiukiewicz, O., Kosmela, P., Barczewski, M., Hejna, A.: Mechanical, thermal and rheological properties of polyethylene-based composites filled with micrometric aluminum powder. Materials. 13, 1242 (2020). https://doi.org/10.3390/ma13051242

    Article  Google Scholar 

  10. Citil, S.: Egrisel yuzeyli yapistirma baglantilarinda malzemenin yapistirici uzerine etkisinin incelenmesi. Dicle Uni. J. Eng. 9(1), 225–234 (2018)

    Google Scholar 

  11. Marques, E.A.S., da Silva, L.F.: Joint strength optimization of adhesively bonded patches. J. Adhes. 84, 915–934 (2008). https://doi.org/10.1080/00218460802505275

    Article  Google Scholar 

  12. Kweon, J.H., Jung, J.W., Kim, T.H., Choi, J.H., Kim, D.H.: Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding. Compos. Struct. 75(1–4), 192–198 (2006)

    Article  Google Scholar 

  13. Boutar, Y., Naïmi, S., Mezlini, S., Ali, M.B.S.: Effect of surface treatment on the shear strength of aluminium adhesive single-lap joints for automotive applications. Int. J. Adhes. Adhes. 67, 38–43 (2016). https://doi.org/10.1016/j.ijadhadh.2015.12.023

    Article  Google Scholar 

  14. Naat, N., Boutar, Y., Naïmi, S., Mezlini, S., Da Silva, L. F. M.: Effect of surface texture on the mechanical performance of bonded joints: a review. J. Adhes. 1–93 (2021). https://doi.org/10.1080/00218464.2021.2008370

  15. Layec, J., Ansart, F., Duluard, S., Turq, V., Aufray, M., Labeau, M.P.: Development of new surface treatments for the adhesive bonding of aluminum surfaces. Int. J. Adhes. Adhes. 103006 (2021). https://doi.org/10.1016/j.ijadhadh.2021.103006

  16. Reneckis, V., et al.: Investigation of technological factors influencing the strength of bonded Al–alloy. In: Broughton, J., Shaw, S. (eds.) IOP Conference Series Materials. Science and Engineering Vol. 1140, pp. 012042. IOP Publishing (2021)

    Google Scholar 

  17. Davis, M., Bond, D.: Principles and practices of adhesive bonded structural joints and repairs. Int. J. Adhes. Adhes. 19, 91–105 (1999). https://doi.org/10.1016/S0143-7496(98)00026-8

    Article  Google Scholar 

  18. Pethrick, R.A.: Design and ageing of adhesives for structural adhesive bonding–a review. Proc. Inst. Mech. Eng. L. 229, 349–379 (2015). https://doi.org/10.1177/1464420714522981

    Article  Google Scholar 

  19. Cavezza, F., Boehm, M., Terryn, H., Hauffman, T.: A review on adhesively bonded aluminium joints in the automotive industry. Metals 10, 730 (2020). https://doi.org/10.3390/met10060730

    Article  Google Scholar 

  20. Kuczmaszewski, J.: Fundamentals of Metal-Metal Adhesive Joint Design. Lublin University of Technology, Poland (2006)

    Google Scholar 

  21. Goglio, L., Rezaei, M., Rossetto, M.: Moisture degradation of open-faced single lap joints. J. Adhes. Sci. Technol. 28, 1382–1393 (2014). https://doi.org/10.1080/01694243.2012.697391

    Article  Google Scholar 

  22. Viana, G., Costa, M., Banea, M.D., da Silva, L.F.M.: Behaviour of environmentally degraded epoxy adhesives as a function of temperature. J. Adhes. 93, 95–112 (2017). https://doi.org/10.1080/00218464.2016.1179118

    Article  Google Scholar 

  23. Da silva, L.F.M., Carbas, R.J.C., Critchlowb, G.W., Figueiredo, M.A.V., Brown, K.: Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints. Int. J. Adhes. Adhes. 29, 621–632 (2009). https://doi.org/10.1016/j.ijadhadh.2009.02.012

  24. Kairouz, K.C., Matthews, F.L.: Strength and failure modes of bonded single lap joints between cross-ply adherends. Compos. 24, 475–484 (1993). https://doi.org/10.1016/0010-4361(93)90017-3

    Article  Google Scholar 

  25. Citil, S., Ayaz, Y., Temiz, S.: Stress analysis of adhesively bonded double strap joints with or without intermediate part subjected to tensile loading. J. Adhes. 93, 343–356 (2017). https://doi.org/10.1080/00218464.2015.1075885

    Article  Google Scholar 

  26. Citil, S.: Comparison of stepped, curved, and S-Type lap joints under tensile loading. In: da Silva, L.F.M. (ed.) Materials Design and Applications, pp. 377–388. Springer, Cham (2017)

    Chapter  Google Scholar 

  27. Yu, J., Wu, J., Wang, H., Zhou, A., Huang, C., Bai, H., Li, L.: Metallic fabrics as the current collector for high-performance graphene-based flexible solid-state supercapacitor. ACS Appl. Mater. Interfaces. 8, 4724–4729 (2016). https://doi.org/10.1021/acsami.5b12180

    Article  Google Scholar 

  28. Dubal, D.P., Chodankar, N.R., Kim, D.H., Gomez-Romero, P.: Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47(6), 2065–2129 (2018)

    Article  Google Scholar 

  29. Guo, X., Zheng, S., Zhang, G., Xiao, X., Li, X., Xu, Y., Xue, H., Pang, H.: Nanostructured graphene-based materials for flexible energy storage. Energy Storage Mater. 9, 150–169 (2017). https://doi.org/10.1016/j.ensm.2017.07.006

    Article  Google Scholar 

  30. Liu, Y.H., Xu, J.L., Gao, X., Sun, Y.L., Lv, J.J., Shen, S., Chen, L.S., Wang, S.D.: Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors. Energy Environ. Sci. 10(12), 2534–2543 (2017)

    Article  Google Scholar 

  31. Gao, L., Surjadi, J.U., Cao, K., Zhang, H., Li, P., Xu, S., Jiang, C., Song, J., Sun, D., Lu, Y.: Flexible fiber-shaped supercapacitor based on nickel–cobalt double hydroxide and pen ink electrodes on metallized carbon fiber. ACS Appl. Mater. Interfaces 9, 5409–5418 (2017). https://doi.org/10.1021/acsami.6b16101

    Article  Google Scholar 

  32. Liu, Z., Mo, F., Li, H., Zhu, M., Wang, Z., Liang, G., Zhi, C.: Advances in flexible and wearable energy-storage textiles. Small Methods 2, 1800124 (2018). https://doi.org/10.1002/smtd.201800124

    Article  Google Scholar 

  33. Liu, Y.H., Xu, J.L., Shen, S., Cai, X.L., Chen, L.S., Wang, S.D.: High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications. J. Mater. Chem. A. 5(19), 9032–9041 (2017)

    Article  Google Scholar 

  34. Gornyakov, V., Ding, J., Sun, Y., Williams, S.: Understanding and designing post-build rolling for mitigation of residual stress and distortion in wire arc additively manufactured components. Mater. Des. 110335 (2021). https://doi.org/10.1016/j.matdes.2021.110335

  35. Metalreyonu: Aluminyum 1050 ozellikleri. https://www.metalreyonu.com.tr/icerik/1050// (2022). Accessed 12 Feb 2022

  36. Morgado, M.A., Carbas, R.J.C., Marques, E.A.S., da Silva, L.F.M.: Reinforcement of CFRP single lap joints using metal laminates. Compos. Struct. 230, 111492 (2019). https://doi.org/10.1016/j.compstruct.2019.111492

    Article  Google Scholar 

  37. E-aircraftsupply: Cytec FM 73 epoxy film adhesive technical data sheet https://www.e-aircraftsupply.com/MSDS/133433cytec%20FM%2073%20tds.pdf (2022). Accessed 14 Feb 2022

  38. Cho, J., Song, S.H.: Modeling hot deformation of 5005 aluminum alloy through locally constrained regression models with logarithmic transformations. Appl. Sci. 12, 152 (2022). https://doi.org/10.3390/app12010152

    Article  Google Scholar 

  39. Metalreyonu: Aluminyum 5005 ozellikleri. https://www.metalreyonu.com.tr/icerik/5005// (2022). Accessed 12 Feb 2022

  40. Ramdani, N., Razali, M. S.: Processing, properties, and uses of lightweight glass fiber/aluminum hybrid structures. In: Kumar, K., Babu, B.S., Davim, J.P. (eds.) Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials, vol.1, pp. 101–120. IGI Global (2022)

    Google Scholar 

  41. Hynes, N.R.J., Vignesh, N.J., Jappes, J.W., Velu, P.S., Barile, C., Ali, M.A., Farooq, M.U., Pruncu, C.I.: Effect of stacking sequence of fibre metal laminates with carbon fibre reinforced composites on mechanical attributes: numerical simulations and experimental validation. Compos. Sci. Technol. 221, 109303 (2022). https://doi.org/10.1016/j.compscitech.2022.109303

    Article  Google Scholar 

  42. Han, Z., Li, H., Xu, X., Wang, H., Li, H., Tao, J.: Crushing characteristics of aluminum/CFRP/aluminum hybrid tubes prepared by spinning forming. Compos. Struct. 249, 112551 (2020). https://doi.org/10.1016/j.compstruct.2020.112551

    Article  Google Scholar 

  43. Ng, L.F., Subramaniam, K., Ishak, N.M.: An overview of the natural/synthetic fibre-reinforced metal-composite sandwich structures for potential applications in aerospace sectors. In: Mazlan, N., Sapuan, S.M., Ilyas, R.A. (eds.) Advanced Composites in Aerospace Engineering Applications, vol. 1, pp. 177–194. Springer, Berlin (2022)

    Google Scholar 

  44. Thomas, A.J., Barocio, E., Pipes, R.B.: A machine learning approach to determine the elastic properties of printed fiber-reinforced polymers. Compos. Sci. Technol. 220, 109293 (2022). https://doi.org/10.1016/j.compscitech.2022.109293

    Article  Google Scholar 

  45. Stephen, C., Behara, S.R., Shivamurthy, B., Selvam, R., Kannan, S., Abbadi, M.: Finite element study on the influence of fiber orientation on the high velocity impact behavior of fiber reinforced polymer composites. Int. J. Interact. 1, 1–10 (2022)

    Google Scholar 

  46. Abdallah, M.H., Braimah, A.: Numerical design optimization of the fiber orientation of glass/phenolic composite tubes based on tensile and radial compression tests. Compos. Struct. 280, 114898 (2022). https://doi.org/10.1016/j.compstruct.2021.114898

    Article  Google Scholar 

  47. da Silva, L.F.M., Ochsner, A., Adams, R.D. (eds.): Handbook of Adhesion Technology. Springer, Heidelberg (2011)

    Google Scholar 

Download references

Acknowledgements

This study was supported by coordinatorship of Scientific Research Projects Office of Adiyaman University with the project titled as “Metal Kumas Uretimi ve Bu Kumaslarin Yapistirma Baglantilarinin Mekanik Ozelliklerinin Incelenmesi” with project number of MÜFMAP/2021-0001. In addition, the authors would like to thank to the Turkish Airlines officials for donating the epoxy film adhesive.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaan Emre Engin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Engin, K.E., Kaya, A.I., Citil, S. (2023). Investigation of Mechanical Properties of Woven Hybrid Metallic Fabric. In: da Silva, L.F.M., Adams, R.D., Dilger, K. (eds) 2nd International Conference on Industrial Applications of Adhesives 2022 . Proceedings in Engineering Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-031-11150-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11150-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11149-5

  • Online ISBN: 978-3-031-11150-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics