Skip to main content

Arms Control for Artificial Intelligence

Part of the Studies in Peace and Security book series (SPS)

Abstract

With military weapon systems getting more and more improved by artificial intelligence and states competing about the leading role in this development, the question arises how arms control measures can be applied to decrease this equipment spiral. The ongoing debates on cyber weapons have already highlighted the problems with controlling or limiting digital technologies, not to mention the dual use problems. While still in an early stage, this chapter develops possible approaches for AI arms control by considering the different life cycle steps of a typical AI enabled system, based on lessons learned from other arms control approaches. It will discuss the different starting points, their arms control potential as well as its limitations to provide a holistic perspective for necessary further develops and debates.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Experience from civilian applications has shown, however, that datasets struggle with unrecognized biases. If, for example, the dataset scarcely features people of color but focuses on white males, the AI might struggle to recognize black faces (Buolamwini & Gebru, 2018). However, it is not the aim of arms control to check used datasets for biases but to prevent the use of certain datasets which could be used for undesired weapon systems.

References

  • Baldus, J. (2022). Doomsday machines? Nukes, nuclear verification and artificial intelligence. In T. Reinhold & N. Schörnig (Eds.), Armament, arms control and artificial intelligence: The Janus-faced nature of machine learning in the military realm. Springer.

    Google Scholar 

  • Belani, G. (2021). The use of artificial intelligence in cybersecurity: A review. IEEE Computer Society. https://www.computer.org/publications/tech-news/trends/the-use-of-artificial-intelligence-in-cybersecurity

  • Briola, A., Turiel, J., Marcaccioli, R., & Aste, T. (2021). Deep reinforcement learning for active high frequency trading. arXiv. https://doi.org/10.48550/arXiv.2101.07107

  • Bundeswehr. (2019). Künstliche Intelligenz in den Landstreitkräften. https://www.bundeswehr.de/de/organisation/heer/aktuelles/kuenstliche-intelligenz-in-den-landstreitkraeften-156226

  • Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Proceedings of Machine Learning Research, 81 (pp. 1–15). 2018 Conference on fairness, accountability, and transparency.

    Google Scholar 

  • Charniak, E. (2019). Introduction to deep learning. MIT. https://doi.org/10.5555/3351847

  • Dahlmann, A. (2022). Armament, arms control and artificial intelligence: The impact of software, machine learning and artificial intelligence on armament and arms control. In T. Reinhold & N. Schörnig (Eds.), Armament, arms control and artificial intelligence: The Janus-faced nature of machine learning in the military realm. Springer.

    Google Scholar 

  • ENISA. (2020). Artificial Intelligence Cybersecurity Challenges - Threat Landscape for Artificial Intelligence. https://www.enisa.europa.eu/publications/artificial-intelligence-cybersecurity-challenges

  • Fischer, S.-C. (2022). Military AI applications: A cross-country comparison of emerging capabilities. In T. Reinhold & N. Schörnig (Eds.), Armament, arms control and artificial intelligence: The Janus-faced nature of machine learning in the military realm. Springer.

    Google Scholar 

  • Heise, A. (2022). AI, WMD and arms control III: The case of nuclear testing. In T. Reinhold & N. Schörnig (Eds.), Armament, arms control and artificial intelligence: The Janus-faced nature of machine learning in the military realm. Springer.

    Google Scholar 

  • Kersting, K. (2018). Machine learning and artificial intelligence: Two fellow travelers on the quest for intelligent behavior in machines Frontiers in Big Data, 1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931929/

  • Kleinhans, J.-P., & Baisakova, N. (2020). The global semiconductor value chain: A technology primer for policy makers. Stiftung Neue Verantwortung. https://www.stiftung-nv.de/sites/default/files/the_global_semiconductor_value_chain.pdf

  • Lessig, L. (1999). Code and other laws of cyberspace. Basic Books, Inc.

    Google Scholar 

  • Mölling, C., & Neuneck, G. (2001). Präventive Rüstungskontrolle und Information Warfare. In Rüstungskontrolle im Cyberspace. Perspekt. der Friedenspolitik im Zeitalter von Comput. Dokumentation einer Int. Konf. der Heinrich-Böll-Stiftung am 29./30. Juni 2001 Berlin (pp. 47–53).

    Google Scholar 

  • Persi Paoli, G., Vignard, K., Danks, D., & Meyer, P. (2020). Modernizing arms control: Exploring responses to the use of AI in military decision-making. UNIDIR. https://unidir.org/publication/modernizing-arms-control

  • Putri, T. T. A., Sriadhi, S., Sari, R. D., Rahmadani, R., & Hutahaean, H. D. (2020). A comparison of classification algorithms for hate speech detection. IOP Conference Series: Materials Science and Engineering, 830(3). https://iopscience.iop.org/volume/1757-899X/830

  • Reinhold, T., & Reuter, C. (2019a). Arms control and its applicability to cyberspace. In C. Reuter (Ed.), Information Technology for Peace and Security - IT-applications and infrastructures in conflicts, crises, war, and peace (pp. 207–231). Springer Fachmedien Wiesbaden.

    Google Scholar 

  • Reinhold, T., & Reuter, C. (2019b). Verification in cyberspace. In C. Reuter (Ed.), Information Technology for Peace and Security - IT-applications and infrastructures in conflicts, crises, war, and peace (pp. 257–275). Springer Fachmedien Wiesbaden.

    Google Scholar 

  • Reinhold, T., & Reuter, C. (2022). Cyber weapons and Artificial Intelligence – Impact, influence and the challenges for arms control. In T. Reinhold & N. Schörnig (Eds.), Armament, arms control and artificial intelligence: The Janus-faced nature of machine learning in the military realm. Springer.

    Google Scholar 

  • Sauer, F. (2022). The military rationale for AI. In T. Reinhold & N. Schörnig (Eds.), Armament, arms control and artificial intelligence: The Janus-faced nature of machine learning in the military realm. Springer.

    Google Scholar 

  • Schörnig, N. (2022). Introduction. In T. Reinhold & N. Schörnig (Eds.), Armament, arms control and artificial intelligence: The Janus-faced nature of machine learning in the military realm. Springer.

    Google Scholar 

  • Stiftung Neue Verantwortung. (2019). Securing artificial intelligence. https://www.stiftung-nv.de/sites/default/files/securing_artificial_intelligence.pdf

  • Verbruggen, M. (2022). No, not that verification: Challenges posed by testing, evaluation, validation and verification of artificial intelligence in weapon systems. In T. Reinhold & N. Schörnig (Eds.), Armament, arms control and artificial intelligence: The Janus-faced nature of machine learning in the military realm. Springer.

    Google Scholar 

  • Vilone, G., & Longo, L. (2020). Explainable artificial intelligence: A systematic review. arXiv. https://doi.org/10.48550/arXiv.2006.00093

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Reinhold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reinhold, T. (2022). Arms Control for Artificial Intelligence. In: Reinhold, T., Schörnig, N. (eds) Armament, Arms Control and Artificial Intelligence. Studies in Peace and Security. Springer, Cham. https://doi.org/10.1007/978-3-031-11043-6_15

Download citation