Skip to main content

Clinical Translation of Biofilm Dispersal Agents

  • Chapter
  • First Online:
Antibiofilm Strategies

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 11))

Abstract

The global problem of chronic infection is enormous and increasing. Combined with the challenge that antibiotic resistance already poses, the task of developing new agents that address chronic infection is arduous. As biofilms are a major strategy used by microbes to evade the immune response and antibiotics, developing therapeutics that prevent or destroy biofilms has become a major focus for many researchers. One promising anti-biofilm strategy is to release or disperse cells from the biofilm, which better exposes them to antimicrobial agents. Dispersal can be accomplished with a variety of agents that can initiate either active or passive dispersal, and many of these agents are in preclinical or clinical development. Yet, significant hurdles exist for the clinical translation of biofilm dispersal agents. Regulatory requirements are ambiguous and daunting and can present major roadblocks. There are also real therapeutic risks for dispersing bacteria during active infection, including sepsis and even death. However, proof of concept studies have provided evidence that dispersal can be combined with antibiotics for an effective and safe treatment. As our understanding of dispersal increases, better models are developed, and dispersal agents are refined, it is likely that we will achieve more success in translating the strategy of biofilm dispersal into the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen JB, Hultqvist LD, Jansen CU, Jakobsen TH, Nilsson M, Rybtke M, Uhd J, Fritz BG, Seifert R, Berthelsen J (2021a) Identification of small molecules that interfere with c-di-GMP signaling and induce dispersal of Pseudomonas aeruginosa biofilms. NPJ Biofilms Microbiomes 7:1–13

    Article  Google Scholar 

  • Andersen JB, Kragh KN, Hultqvist LD, Rybtke M, Nilsson M, Jakobsen TH, Givskov M, Tolker-Nielsen T (2021b) Induction of native c-di-GMP phosphodiesterases leads to dispersal of Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 65:e02431–e02420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antoniani D, Rossi E, Rinaldo S, Bocci P, Lolicato M, Paiardini A, Raffaelli N, Cutruzzolà F, Landini P (2013) The immunosuppressive drug azathioprine inhibits biosynthesis of the bacterial signal molecule cyclic-di-GMP by interfering with intracellular nucleotide pool availability. Appl Microbiol Biotechnol 97:7325–7336

    Article  CAS  PubMed  Google Scholar 

  • Applegate DH, Bryers JD (1991) Effects of carbon and oxygen limitations and calcium concentrations on biofilm removal processes. Biotechnol Bioeng 37:17–25

    Article  CAS  PubMed  Google Scholar 

  • Aridis Pharmaceuticals (2019). https://www.biospace.com/article/releases/aridis-pharmaceuticals-reports-phase-2-clinical-trial-results-of-ar-105-for-the-treatment-of-ventilator-associated-pneumonia-caused-by-pseudomonas-aeruginosa/

  • Aslam S, Trautner BW, Ramanathan V, Darouiche RO (2008) Pilot trial of N-acetylcysteine and tigecycline as a catheter-lock solution for treatment of hemodialysis catheter-associated bacteremia. Infect Control Hosp Epidemiol 29:894–897

    Article  PubMed  Google Scholar 

  • Baidamshina DR, Trizna EY, Holyavka MG, Bogachev MI, Artyukhov VG, Akhatova FS, Rozhina EV, Fakhrullin RF, Kayumov AR (2017) Targeting microbial biofilms using Ficin, a nonspecific plant protease. Sci Rep 7:46068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker B (2020) 1289. Pravibismane is a potent, broad spectrum anti-infective small molecule that rapidly disrupts bacterial bioenergetics and halts bacterial growth. Open Forum Infect Dis 7:S659–SS60

    Article  PubMed Central  Google Scholar 

  • Baker P, Whitfield GB, Hill PJ, Little DJ, Pestrak MJ, Robinson H, Wozniak DJ, Howell PL (2015) Characterization of the Pseudomonas aeruginosa glycoside hydrolase PslG reveals that its levels are critical for Psl polysaccharide biosynthesis and biofilm formation. J Biol Chem 290:28374–28387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker P, Hill PJ, Snarr BD, Alnabelseya N, Pestrak MJ, Lee MJ, Jennings LK, Tam J, Melnyk RA, Parsek MR, Sheppard DC, Wozniak DJ, Howell PL (2016) Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Sci Adv 2:e1501632

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballard TE, Richards JJ, Wolfe AL, Melander C (2008) Synthesis and antibiofilm activity of a second-generation reverse-amide oroidin library: a structure–activity relationship study. Chem Eur J 14:10745–10761

    Article  CAS  PubMed  Google Scholar 

  • Banin E, Brady KM, Peter Greenberg E (2006) Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol 72:2064–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188:7344–7353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA, Kjelleberg S (2009) Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 191:7333–7342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barraud N, Kardak BG, Yepuri NR, Howlin RP, Webb JS, Faust SN, Kjelleberg S, Rice SA, Kelso MJ (2012) Cephalosporin-3′-diazeniumdiolates: targeted NO-donor prodrugs for dispersing bacterial biofilms. Angew Chem Int Ed 51:9057–9060

    Article  CAS  Google Scholar 

  • Berne C, Ellison CK, Ducret A, Brun YV (2018) Bacterial adhesion at the single-cell level. Nat Rev Microbiol 16:616–627

    Article  CAS  PubMed  Google Scholar 

  • Blasi F, Page C, Rossolini GM, Pallecchi L, Matera MG, Rogliani P, Cazzola M (2016) The effect of N-acetylcysteine on biofilms: implications for the treatment of respiratory tract infections. Respir Med 117:190–197

    Article  PubMed  Google Scholar 

  • Boles BR, Horswill AR (2008) Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4:e1000052

    Article  PubMed  PubMed Central  Google Scholar 

  • Bounds K, Colmer-Hamood JA, Myntti M, Jeter RM, Hamood AN (2021) The influence of a biofilm-dispersing wound gel on the wound healing process. Int Wound J 19(3):553–572

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai Y-m, Webb JS (2020) Optimization of nitric oxide donors for investigating biofilm dispersal response in Pseudomonas aeruginosa clinical isolates. Appl Microbiol Biotechnol 104:8859–8869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canovas J, Baldry M, Bojer MS, Andersen PS, Grzeskowiak PK, Stegger M, Damborg P, Olsen CA, Ingmer H (2016) Cross-talk between Staphylococcus aureus and other Staphylococcal species via the agr quorum sensing system. Front Microbiol 7:1733

    Article  PubMed  PubMed Central  Google Scholar 

  • Cathie K, Howlin R, Carroll M, Clarke S, Connett G, Cornelius V, Daniels T, Duignan C, Hall-Stoodley L, Jefferies J, Kelso M, Kjelleberg S, Legg J, Pink S, Rogers G, Salib R, Stoodley P, Sukhtankar P, Webb J, Faust S (2014) G385 RATNO–reducing antibiotic tolerance using nitric oxide in cystic fibrosis: report of a proof of concept clinical trial. Arch Dis Child 99:A159

    Article  Google Scholar 

  • Chan KH, Allen GC, Kelley PE, Streubel SO, Friedman NR, Yoon P, Gao D, Ruiz AG, Jung TTK (2018) Dornase alfa ototoxic effects in animals and efficacy in the treatment of clogged tympanostomy tubes in children: a preclinical study and a randomized clinical trial. JAMA Otolaryngol Head Neck Surg 144:776–780

    Article  PubMed  PubMed Central  Google Scholar 

  • Chemani C, Imberty A, de Bentzmann S, Pierre M, Wimmerová M, Guery BP, Faure K (2009) Role of LecA and LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Infect Immun 77:2065–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho KH, Tryon RG, Kim JH (2020) Screening for Diguanylate cyclase (DGC) inhibitors mitigating bacterial biofilm formation. Front Chem 8:264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen LD, van Gennip M, Rybtke MT, Hong W, Chiang W-C, Alhede M, Høiby N, Nielsen TE, Givskov M, Tolker-Nielsen T (2013) Clearance of Pseudomonas aeruginosa foreign-body biofilm infections through reduction of the cyclic di-GMP level in the bacteria. Infect Immun 81:2705–2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciofu O, Rojo-Molinero E, Macià MD, Antonio O (2017) Antibiotic treatment of biofilm infections. APMIS 125:304–319

    Article  PubMed  Google Scholar 

  • Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, Howell PL, Wozniak DJ, Parsek MR (2012) The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol 14:1913–1928

    Article  CAS  PubMed  Google Scholar 

  • Connolly KL, Roberts AL, Holder RC, Reid SD (2011) Dispersal of Group A streptococcal biofilms by the cysteine protease SpeB leads to increased disease severity in a murine model. PLoS One 6:e18984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke AC, Florez C, Dunshee EB, Lieber AD, Terry ML, Light CJ, Schertzer JW (2020) Pseudomonas quinolone signal-induced outer membrane vesicles enhance biofilm dispersion in Pseudomonas aeruginosa. mSphere 5(6):1

    Article  Google Scholar 

  • Costerton JW (2001) Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol 9:50–52

    Article  CAS  PubMed  Google Scholar 

  • CysticFibrosisNewsToday (2000). https://cysticfibrosisnewstoday.com/2020/06/01/pravibismane-granted-fda-orphan-drug-designation-for-cf-lung-infections/

  • Darouiche RO, Mansouri MD, Gawande PV, Madhyastha S (2009) Antimicrobial and antibiofilm efficacy of triclosan and DispersinB combination. J Antimicrob Chemother 64:88–93

    Article  CAS  PubMed  Google Scholar 

  • Davey ME, Caiazza NC, O'Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122

    Article  CAS  PubMed  Google Scholar 

  • Davies D (2007) Induction of a physiological dispersion response in bacterial cells in a biofilm, WO2008143889A1. In Google Patents

    Google Scholar 

  • Davies DG, Marques CN (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403

    Article  CAS  PubMed  Google Scholar 

  • Devaraj A, Buzzo JR, Mashburn-Warren L, Gloag ES, Novotny LA, Stoodley P, Bakaletz LO, Goodman SD (2019) The extracellular DNA lattice of bacterial biofilms is structurally related to Holliday junction recombination intermediates. Proc Natl Acad Sci U S A 116:25068–25077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diggle SP, Stacey RE, Dodd C, Cámara M, Williams P, Winzer K (2006) The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ Microbiol 8:1095–1104

    Article  CAS  PubMed  Google Scholar 

  • Draughn G, Logan CL, Allen PA, Routh MR, Stone KR, Kirker LB, Schuchman RM, Linder KE, Baynes RE, James G, Melander C, Pollard A, Cavanagh J (2017) Evaluation of a 2-aminoimidazole variant as adjuvant treatment for dermal bacterial infections. Drug Des Devel Ther 11:153–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elgharably H, Hussain ST, Shrestha NK, Blackstone EH, Pettersson GB (2016) Current hypotheses in cardiac surgery: biofilm in infective endocarditis. Semin Thorac Cardiovasc Surg 28:56–59

    Article  PubMed  Google Scholar 

  • El-Tarabily KA, El-Saadony MT, Alagawany M, Arif M, Batiha GE, Khafaga AF, Elwan HAM, Elnesr SS, Abd ME, El-Hack. (2021) Using essential oils to overcome bacterial biofilm formation and their antimicrobial resistance. Saudi J Biol Sci 28:5145–5156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estellés A, Woischnig A-K, Liu K, Stephenson R, Lomongsod E, Nguyen D, Zhang J, Heidecker M, Yang Y, Simon RJ (2016) A high-affinity native human antibody disrupts biofilm from Staphylococcus aureus bacteria and potentiates antibiotic efficacy in a mouse implant infection model. Antimicrob Agents Chemother 60:2292–2301

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleming D, Rumbaugh KP (2017) Approaches to dispersing medical biofilms. Microorganisms 5:15

    Article  PubMed Central  Google Scholar 

  • Fleming D, Rumbaugh K (2018) The consequences of biofilm dispersal on the host. Sci Rep 8:10738

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleming D, Chahin L, Rumbaugh K (2017) Glycoside hydrolases degrade Polymicrobial bacterial biofilms in wounds. Antimicrob Agents Chemother 61(2):e01998–e01916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming D, Redman WK, Welch GS, Mdluli NV, Rouchon CN, Frank KL, Rumbaugh KP (2020) Utilizing glycoside hydrolases to improve the quantification and visualization of biofilm bacteria. Biofilms 2:100037

    Article  CAS  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  PubMed  Google Scholar 

  • Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189:7945–7947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Zhong W, Chen K, Tang P, Guo J (2020) Chemical composition and anti-biofilm activity of essential oil from Citrus medica L. var. sarcodactylis Swingle against Listeria monocytogenes. Ind Crop Prod 144:112036

    Article  CAS  Google Scholar 

  • Gawande PV, Clinton AP, LoVetri K, Yakandawala N, Rumbaugh KP, Madhyastha S (2014a) Antibiofilm efficacy of DispersinB((R)) wound spray used in combination with a silver wound dressing. Microbiol Insights 7:9–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Gawande PV, Leung KP, Madhyastha S (2014b) Antibiofilm and antimicrobial efficacy of DispersinB(R)-KSL-W peptide-based wound gel against chronic wound infection associated bacteria. Curr Microbiol 68:635–641

    Article  CAS  PubMed  Google Scholar 

  • Gbejuade HO, Lovering AM, Webb JC (2015) The role of microbial biofilms in prosthetic joint infections. Acta Orthop 86:147–158

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodman SD, Bakaletz LO (2021) Antibody compositions for disrupting biofilms. In Google Patents

    Google Scholar 

  • Gotz F (2002) Staphylococcus and biofilms. Mol Microbiol 43:1367–1378

    Article  CAS  PubMed  Google Scholar 

  • Grishin AV, Krivozubov MS, Karyagina AS, Gintsburg AL (2015) Pseudomonas aeruginosa lectins as targets for novel antibacterials. Acta Nat 7:29–41

    Article  CAS  Google Scholar 

  • Group, F. D. A. Wound Healing Clinical Focus (2001) Guidance for industry: chronic cutaneous ulcer and burn wounds-developing products for treatment. Wound Repair Regen 9:258–268

    Article  Google Scholar 

  • Ha DG, O’Toole GA (2015) C-di-GMP and its effects on biofilm formation and dispersion: a pseudomonas aeruginosa review. Microbiol Spectr 3:MB-0003-2014

    Article  PubMed  Google Scholar 

  • Hatt JK, Rather PN (2008) Role of bacterial biofilms in urinary tract infections. Curr Top Microbiol Immunol 322:163–192

    CAS  PubMed  Google Scholar 

  • Hee C-S, Habazettl J, Schmutz C, Schirmer T, Jenal U, Grzesiek S (2020) Intercepting second-messenger signaling by rationally designed peptides sequestering c-di-GMP. Proc Natl Acad Sci 117:17211–17220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Hoiby N, Kjelleberg S, Givskov M (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102

    Article  CAS  PubMed  Google Scholar 

  • Howlin RP, Cathie K, Hall-Stoodley L, Cornelius V, Duignan C, Allan RN, Fernandez BO, Barraud N, Bruce KD, Jefferies J, Kelso M, Kjelleberg S, Rice SA, Rogers GB, Pink S, Smith C, Sukhtankar PS, Salib R, Legg J, Carroll M, Daniels T, Feelisch M, Stoodley P, Clarke SC, Connett G, Faust SN, Webb JS (2017) Low-dose nitric oxide as targeted anti-biofilm adjunctive therapy to treat chronic Pseudomonas aeruginosa infection in cystic fibrosis. Mol Ther 25:2104–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh Y, Wang X, Hinnebusch BJ, Preston JF 3rd, Romeo T (2005) Depolymerization of beta-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol 187:382–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izano EA, Wang H, Ragunath C, Ramasubbu N, Kaplan JB (2007) Detachment and killing of Aggregatibacter actinomycetemcomitans biofilms by dispersin B and SDS. J Dent Res 86:618–622

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Parihar DK (2018) Antibacterial, biofilm dispersal and antibiofilm potential of alkaloids and flavonoids of Curcuma. Biocatal Agric Biotechnol 16:677–682

    Article  Google Scholar 

  • Jang CH, Piao YL, Huang X, Yoon EJ, Park SH, Lee K, Zhan C-G, Cho H (2016) Modeling and re-engineering of Azotobacter vinelandii alginate lyase to enhance its catalytic efficiency for accelerating biofilm degradation. PLoS One 11:e0156197

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeon AB, Ackart DF, Li W, Jackson M, Melander RJ, Melander C, Abramovitch RB, Chicco AJ, Basaraba RJ, Obregón-Henao A (2019) 2-aminoimidazoles collapse mycobacterial proton motive force and block the electron transport chain. Sci Rep 9:1513

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Cody GD, Harding AK, Wilmes P, Schrenk M, Wheeler KE, Banfield JF, Thelen MP (2010) Characterization of extracellular polymeric substances from acidophilic microbial biofilms. Appl Environ Microbiol 76:2916–2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson EMV, Crusz SA, Kolomiets E, Buts L, Kadam RU, Cacciarini M, Bartels K-M, Diggle SP, Cámara M, Williams P (2008) Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB. Chem Biol 15:1249–1257

    Article  CAS  PubMed  Google Scholar 

  • KaneBiotech (2019). https://ir.kanebiotech.com/press-releases/detail/210/kane-biotech-positions-dispersinb-for-wound-care

  • Kaplan JB, Ragunath C, Velliyagounder K, Fine DH, Ramasubbu N (2004) Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 48:2633–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan JB, LoVetri K, Cardona ST, Madhyastha S, Sadovskaya I, Jabbouri S, Izano EA (2012) Recombinant human DNase I decreases biofilm and increases antimicrobial susceptibility in staphylococci. J Antibiot 65:73–77

    Article  CAS  Google Scholar 

  • Kaplan JB, Mlynek KD, Hettiarachchi H, Alamneh YA, Biggemann L, Zurawski DV, Black CC, Bane CE, Kim RK, Granick MS (2018) Extracellular polymeric substance (EPS)-degrading enzymes reduce staphylococcal surface attachment and biocide resistance on pig skin in vivo. PLoS One 13:e0205526

    Article  PubMed  PubMed Central  Google Scholar 

  • Keifer PA, Schwartz RE, Koker MES, Hughes Jr RG, Rittschof D, Rinehart KL (1991) Bioactive bromopyrrole metabolites from the Caribbean sponge Agelas conifera. J Org Chem 56:2965–2975

    Article  CAS  Google Scholar 

  • Kjelleberg S, Molin S (2002) Is there a role for quorum sensing signals in bacterial biofilms? Curr Opin Microbiol 5:254–258

    Article  CAS  PubMed  Google Scholar 

  • Koswatta PB, Lovely CJ (2011) Structure and synthesis of 2-aminoimidazole alkaloids from Leucetta and Clathrina sponges. Nat Prod Rep 28:511–528

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Lee JH, Beyenal H, Lee J (2020) Fatty acids as Antibiofilm and Antivirulence agents. Trends Microbiol 28:753–768

    Article  CAS  PubMed  Google Scholar 

  • Lade H, Paul D, Kweon JH (2014) N-acyl homoserine lactone-mediated quorum sensing with special reference to use of quorum quenching bacteria in membrane biofouling control. Biomed Res Int 2014:162584

    Article  PubMed  PubMed Central  Google Scholar 

  • Lasa I, Penades JR (2006) Bap: a family of surface proteins involved in biofilm formation. Res Microbiol 157:99–107

    Article  CAS  PubMed  Google Scholar 

  • Le Mauff F, Bamford NC, Alnabelseya N, Zhang Y, Baker P, Robinson H, Codee JDC, Howell PL, Sheppard DC (2019) Molecular mechanism of Aspergillus fumigatus biofilm disruption by fungal and bacterial glycoside hydrolases. J Biol Chem 294:10760–10772

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewenza S (2013) Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa. Front Microbiol 4:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Heine S, Entian M, Sauer K, Frankenberg-Dinkel N (2013) NO-induced biofilm dispersion in Pseudomonas aeruginosa is mediated by a MHYT-domain coupled phosphodiesterase. J Bacteriol 195:3531–3542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limoli DH, Jones CJ, Wozniak DJ (2015) Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr 3:3

    Article  Google Scholar 

  • Lin Y, Zhou X, Li Y (2022) Strategies for Streptococcus mutans biofilm dispersal through extracellular polymeric substances disruption. Mol Oral Microbiol 37:1–8

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Huang Q, Chen W (2012) Heterologous expression of bacterial nitric oxide synthase gene: a potential biological method to control biofilm development in the environment. Can J Microbiol 58:336–344

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Liew CW, Wong YH, Tan ST, Poh WH, Manimekalai MSS, Rajan S, Xin L, Liang ZX, Gruber G, Rice SA, Lescar J (2018a) Insights into biofilm dispersal regulation from the crystal structure of the PAS-GGDEF-EAL region of RbdA from Pseudomonas aeruginosa. J Bacteriol 200:e00515–e00517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Naha PC, Hwang G, Kim D, Huang Y, Simon-Soro A, Jung H-I, Ren Z, Li Y, Gubara S, Alawi F, Zero D, Hara AT, Cormode DP, Koo H (2018b) Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity. Nat Commun 9:2920

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez D, Vlamakis H, Kolter R (2010) Biofilms. Cold Spring Harb Perspect Biol 2:a000398

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A 104:11197–11202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques CN, Morozov A, Planzos P, Zelaya HM (2014) The fatty acid signaling molecule cis-2-decenoic acid increases metabolic activity and reverts persister cells to an antimicrobial-susceptible state. Appl Environ Microbiol 80:6976–6991

    Article  PubMed  PubMed Central  Google Scholar 

  • Marques CN, Davies DG, Sauer K (2015) Control of biofilms with the fatty acid signaling molecule cis-2-decenoic acid. Pharmaceuticals (Basel) 8:816–835

    Article  CAS  PubMed Central  Google Scholar 

  • Martin I, Waters V, Grasemann H (2021) Approaches to targeting bacterial biofilms in cystic fibrosis airways. Int J Mol Sci 22(4):2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marvasi M, Chen C, Carrazana M, Durie IA, Teplitski M (2014) Systematic analysis of the ability of nitric oxide donors to dislodge biofilms formed by Salmonella enterica and Escherichia coli O157: H7. AMB Express 4:1–11

    Article  CAS  Google Scholar 

  • Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437:422–425

    Article  CAS  PubMed  Google Scholar 

  • McCallon SK, Weir D, Lantis JC 2nd (2014) Optimizing wound bed preparation with collagenase enzymatic debridement. J Am Coll Clin Wound Spec 6:14–23

    PubMed  Google Scholar 

  • McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S (2011) Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 10:39–50

    Article  PubMed  Google Scholar 

  • Miller KG, Tran PL, Haley CL, Kruzek C, Colmer-Hamood JA, Myntti M, Hamood AN (2014) Next science wound gel technology, a novel agent that inhibits biofilm development by gram-positive and gram-negative wound pathogens. Antimicrob Agents Chemother 58:3060–3072

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitrofanova O, Mardanova A, Evtugyn V, Bogomolnaya L, Sharipova M (2017) Effects of bacillus serine proteases on the bacterial biofilms. Biomed Res Int 2017:8525912

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitsuishi M, Oshikata T, Kumabe S, Kobayashi A, Katoku K, Kanno T, Hamamura M, Tsuchitani M (2015) Histological dermal changes caused by preparation and application procedures in percutaneous dose toxicity studies in dogs, rabbits and rats. J Toxicol Pathol 28:1–9

    Article  PubMed  Google Scholar 

  • Montanaro L, Poggi A, Visai L, Ravaioli S, Campoccia D, Speziale P, Arciola CR (2011) Extracellular DNA in biofilms. Int J Artif Organs 34:824–831

    Article  CAS  PubMed  Google Scholar 

  • Nicol M, Alexandre S, Luizet JB, Skogman M, Jouenne T, Salcedo SP, De E (2018) Unsaturated fatty acids affect quorum sensing communication system and inhibit motility and biofilm formation of Acinetobacter baumannii. Int J Mol Sci 19:214

    Article  PubMed Central  Google Scholar 

  • Nijland R, Hall MJ, Burgess JG (2010) Dispersal of biofilms by secreted, matrix degrading, bacterial DNase. PLoS One 5:e15668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson CL (2003) Lectins: proteins that interpret the sugar code. Anal Chem 75:348–A-53 A

    Article  Google Scholar 

  • Novotny LA, Goodman SD, Bakaletz LO (2020) Targeting a bacterial DNABII protein with a chimeric peptide immunogen or humanised monoclonal antibody to prevent or treat recalcitrant biofilm-mediated infections. EBioMedicine 59:102867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oakley JL, Weiser R, Powell LC, Forton J, Mahenthiralingam E, Rye PD, Hill KE, Thomas DW, Pritchard MF (2021) Phenotypic and genotypic adaptations in Pseudomonas aeruginosa biofilms following long-term exposure to an alginate oligomer therapy. mSphere 6:e01216–e01220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohana P, Delmer DP, Carlson RW, Glushka J, Azadi P, Bacic T, Benziman M (1998) Identification of a novel triterpenoid saponin from Pisum sativum as a specific inhibitor of the diguanylate cyclase of Acetobacter xylinum. Plant Cell Physiol 39:144–152

    Article  CAS  PubMed  Google Scholar 

  • Omar A, Wright JB, Schultz G, Burrell R, Nadworny P (2017) Microbial biofilms and chronic wounds. Microorganisms 5(1):9

    Article  PubMed Central  Google Scholar 

  • Otto M (2014) Staphylococcus aureus toxins. Curr Opin Microbiol 17:32–37

    Article  CAS  PubMed  Google Scholar 

  • Pang Z, Raudonis R, Glick BR, Lin T-J, Cheng Z (2019) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37:177–192

    Article  CAS  PubMed  Google Scholar 

  • Papa R, Garzoli S, Vrenna G, Sabatino M, Sapienza F, Relucenti M, Donfrancesco O, Fiscarelli EV, Artini M, Selan L, Ragno R (2020) Essential oils biofilm modulation activity, chemical and machine learning analysis. Application on Staphylococcus aureus isolates from cystic fibrosis patients. Int J Mol Sci 21:9258

    Article  CAS  PubMed Central  Google Scholar 

  • Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in gram-negative bacteria. Nat Rev Microbiol 14:576–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez MJ, Falqué E, Domínguez H (2016) Antimicrobial action of compounds from marine seaweed. Mar Drugs 14:52

    Article  PubMed Central  Google Scholar 

  • Powell LC, Pritchard MF, Ferguson EL, Powell KA, Patel SU, Rye PD, Sakellakou S-M, Buurma NJ, Brilliant CD, Copping JM, Menzies GE, Lewis PD, Hill KE, Thomas DW (2018) Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides. NPJ Biofilms Microbiomes 4:13–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Puskas A, Greenberg EP, Kaplan S, Schaefer AL (1997) A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J Bacteriol 179:7530–7537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintas V, Prada-López I, Donos N, Suárez-Quintanilla D, Tomás I (2015a) Antiplaque effect of essential oils and 0.2% chlorhexidine on an in situ model of oral biofilm growth: a randomised clinical trial. PLoS One 10:e0117177

    Article  PubMed  PubMed Central  Google Scholar 

  • Quintas V, Prada-López I, Prados-Frutos JC, Tomás I (2015b) In situ antimicrobial activity on oral biofilm: essential oils vs. 0.2% chlorhexidine. Clin Oral Investig 19:97–107

    Article  PubMed  Google Scholar 

  • Quintas V, Prada-López I, Carreira MJ, Suárez-Quintanilla D, Balsa-Castro C, Tomás I (2017) In situ antibacterial activity of essential oils with and without alcohol on oral biofilm: a randomized clinical trial. Front Microbiol 8:2162

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramasubbu N, Thomas LM, Ragunath C, Kaplan JB (2005) Structural analysis of dispersin B, a biofilm-releasing glycoside hydrolase from the periodontopathogen Actinobacillus actinomycetemcomitans. J Mol Biol 349:475–486

    Article  CAS  PubMed  Google Scholar 

  • Redman WK, Welch GS, Rumbaugh KP (2021) Assessing biofilm dispersal in murine wounds. J Vis Exp 174:62136

    Google Scholar 

  • Ren Z, Kim D, Paula AJ, Hwang G, Liu Y, Li J, Daniell H, Koo H (2019) Dual-targeting approach degrades biofilm matrix and enhances bacterial killing. J Dent Res 98:322–330

    Article  CAS  PubMed  Google Scholar 

  • Research, Center for Drug Evaluation (2017) Antibacterial therapies for patients with an unmet medical need for the treatment of serious bacterial diseases. Center for Drug Evaluation and Research

    Google Scholar 

  • Richards JJ, Eric Ballard T, Melander C (2008) Inhibition and dispersion of Pseudomonas aeruginosa biofilms with reverse amide 2-aminoimidazole oroidin analogues. Org Biomol Chem 6:1356–1363

    Article  CAS  PubMed  Google Scholar 

  • Robijns SCA, Roberfroid S, Van Puyvelde S, De Pauw B, Santamaría EU, De Weerdt A, De Coster D, Kim Hermans SCJ, Keersmaecker D, Vanderleyden J (2014) A GFP promoter fusion library for the study of Salmonella biofilm formation and the mode of action of biofilm inhibitors. Biofouling 30:605–625

    Article  CAS  PubMed  Google Scholar 

  • Rodensky M, Zolkov C, Davies DG (2020) Method and composition for water treatment, WO2020240559A1. Google Patents

    Google Scholar 

  • Rogers SA, Huigens III RW, Cavanagh J, Melander C (2010) Synergistic effects between conventional antibiotics and 2-aminoimidazole-derived antibiofilm agents. Antimicrob Agents Chemother 54:2112–2118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy AB, Petrova OE, Sauer K (2012) The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion. J Bacteriol 194:2904–2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudkin JK, McLoughlin RM, Preston A, Massey RC (2017) Bacterial toxins: offensive, defensive, or something else altogether? PLoS Pathog 13:e1006452

    Article  PubMed  PubMed Central  Google Scholar 

  • Rumbaugh KP, Sauer K (2020) Biofilm dispersion. Nat Rev Microbiol 18:571–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saggu SK, Jha G, Mishra PC (2019) Enzymatic degradation of biofilm by metalloprotease from microbacterium sp. SKS10. Front Bioeng Biotechnol 7:192

    Article  PubMed  PubMed Central  Google Scholar 

  • Sambanthamoorthy K, Sloup RE, Parashar V, Smith JM, Kim EE, Semmelhack MF, Neiditch MB, Waters CM (2012) Identification of small molecules that antagonize diguanylate cyclase enzymes to inhibit biofilm formation. Antimicrob Agents Chemother 56:5202–5211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer K, Cullen MC, Rickard AH, Zeef LA, Davies DG, Gilbert P (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186:7312–7326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber F, Beutler M, Enning D, Lamprecht-Grandio M, Zafra O, Gonzalez-Pastor JE, de Beer D (2011) The role of nitric-oxide-synthase-derived nitric oxide in multicellular traits of Bacillus subtilis 3610: biofilm formation, swarming, and dispersal. BMC Microbiol 11:111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwechheimer C, Kuehn MJ (2015) Outer-membrane vesicles from gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 13:605–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwenk MH (2010) Ferumoxytol: a new intravenous iron preparation for the treatment of iron deficiency anemia in patients with chronic kidney disease. Pharmacotherapy 30:70–79

    Article  CAS  PubMed  Google Scholar 

  • Shah CB, Mittelman MW, Costerton JW, Parenteau S, Pelak M, Arsenault R, Mermel LA (2002) Antimicrobial activity of a novel catheter lock solution. Antimicrob Agents Chemother 46:1674–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma K, Pagedar Singh A (2018) Antibiofilm effect of DNase against single and mixed species biofilm. Foods 7(3):42

    Article  CAS  PubMed Central  Google Scholar 

  • Shinde S, Lee LH, Chu T (2021) Inhibition of biofilm formation by the synergistic action of EGCG-S and antibiotics. Antibiotics (Basel) 10(2):102

    Article  CAS  Google Scholar 

  • Singh PK, Yadav VK, Kalia M, Dohare S, Sharma D, Agarwal V (2017) Pseudomonas aeruginosa auto inducer3-oxo-C12-HSL exerts bacteriostatic effect and inhibits Staphylococcus epidermidis biofilm. Microb Pathog 110:612–619

    Article  CAS  PubMed  Google Scholar 

  • Snarr BD, Baker P, Bamford NC, Sato Y, Liu H, Lehoux M, Gravelat FN, Ostapska H, Baistrocchi SR, Cerone RP, Filler EE, Parsek MR, Filler SG, Howell PL, Sheppard DC (2017) Microbial glycoside hydrolases as antibiofilm agents with cross-kingdom activity. Proc Natl Acad Sci U S A 114:7124–7129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solano C, Echeverz M, Lasa I (2014) Biofilm dispersion and quorum sensing. Curr Opin Microbiol 18:96–104

    Article  CAS  PubMed  Google Scholar 

  • Soren O, Rineh A, Silva DG, Cai Y, Howlin RP, Allan RN, Feelisch M, Davies JC, Connett GJ, Faust SN (2020) Cephalosporin nitric oxide-donor prodrug DEA-C3D disperses biofilms formed by clinical cystic fibrosis isolates of Pseudomonas aeruginosa. J Antimicrob Chemother 75:117–125

    Article  CAS  PubMed  Google Scholar 

  • Stanley NR, Lazazzera BA (2004) Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 52:917–924

    Article  CAS  PubMed  Google Scholar 

  • Steed DL (2004) Debridement. Am J Surg 187:71S–74S

    Article  PubMed  Google Scholar 

  • Suresh MK, Biswas R, Biswas L (2019) An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. Int J Med Microbiol 309:1–12

    Article  CAS  PubMed  Google Scholar 

  • Szymanska M, Karakulska J, Sobolewski P, Kowalska U, Grygorcewicz B, Bottcher D, Bornscheuer UT, Drozd R (2020) Glycoside hydrolase (PelAh) immobilization prevents Pseudomonas aeruginosa biofilm formation on cellulose-based wound dressing. Carbohydr Polym 246:116625

    Article  CAS  PubMed  Google Scholar 

  • Tetz VV, Tetz GV (2010) Effect of extracellular DNA destruction by DNase I on characteristics of forming biofilms. DNA Cell Biol 29:399–405

    Article  CAS  PubMed  Google Scholar 

  • Tetz GV, Artemenko NK, Tetz VV (2009) Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother 53:1204–1209

    Article  CAS  PubMed  Google Scholar 

  • Thompson MG, Truong-Le V, Alamneh YA, Black CC, Anderl J, Honnold CL, Pavlicek RL, Abu-Taleb R, Wise MC, Hall ER (2015) Evaluation of gallium citrate formulations against a multidrug-resistant strain of Klebsiella pneumoniae in a murine wound model of infection. Antimicrob Agents Chemother 59:6484–6493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tielker D, Hacker S, Loris R, Strathmann M, Wingender J, Wilhelm S, Rosenau F, Jaeger K-E (2005) Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 151:1313–1323

    Article  CAS  PubMed  Google Scholar 

  • Uppuluri P, Lopez-Ribot JL (2016) Go forth and colonize: dispersal from clinically important microbial biofilms. PLoS Pathog 12:e1005397

    Article  PubMed  PubMed Central  Google Scholar 

  • Valentini M, Filloux A (2016) Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem 291:12547–12555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vorkapic D, Pressler K, Schild S (2016) Multifaceted roles of extracellular DNA in bacterial physiology. Curr Genet 62:71–79

    Article  CAS  PubMed  Google Scholar 

  • Walters MC 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47:317–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waryah CB, Wells K, Ulluwishewa D, Chen-Tan N, Gogoi-Tiwari J, Ravensdale J, Costantino P, Gokcen A, Vilcinskas A, Wiesner J, Mukkur T (2017) In vitro antimicrobial efficacy of tobramycin against Staphylococcus aureus biofilms in combination with or without DNase I and/or Dispersin B: a preliminary investigation. Microb Drug Resist 23:384–390

    Article  CAS  PubMed  Google Scholar 

  • Watters C, Fleming D, Bishop D, Rumbaugh KP (2016) Host responses to biofilm. Prog Mol Biol Transl Sci 142:193–239

    Article  CAS  PubMed  Google Scholar 

  • Wille J, Coenye T (2020) Biofilm dispersion: the key to biofilm eradication or opening Pandora's box? Biofilms 2:100027

    Article  CAS  Google Scholar 

  • Williams DE, Boon EM (2019) Towards understanding the molecular basis of nitric oxide-regulated group behaviors in pathogenic bacteria. J Innate Immun 11:205–215

    Article  CAS  PubMed  Google Scholar 

  • Wood TL, Gong T, Zhu L, Miller J, Miller DS, Yin B, Wood TK (2018) Rhamnolipids from Pseudomonas aeruginosa disperse the biofilms of sulfate-reducing bacteria. NPJ Biofilms Microbiomes 4:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu H, Moser C, Wang H-Z, Høiby N, Song Z-J (2015) Strategies for combating bacterial biofilm infections. Int J Oral Sci 7:1–7

    Article  PubMed  Google Scholar 

  • Yakandawala N, Gawande PV, LoVetri K, Cardona ST, Romeo T, Nitz M, Madhyastha S (2011) Characterization of the poly-beta-1,6-N-acetylglucosamine polysaccharide component of Burkholderia biofilms. Appl Environ Microbiol 77:8303–8309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada A, Kitamura H, Yamaguchi K, Fukuzawa S, Kamijima C, Yazawa K, Kuramoto M, Wang G-Y-S, Fujitani Y, Uemura D (1997) Development of chemical substances regulating biofilm formation. Bull Chem Soc Jpn 70:3061–3069

    Article  CAS  Google Scholar 

  • Yang Y, Huang Z, Li L-L (2021) Advanced nitric oxide donors: chemical structure of NO drugs NO nanomedicines and biomedical applications. Nanoscale 13:444–459

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Bishop PL (2003) Biodegradabilitys of biofilm extracellular polymeric substances. Chemosphere 50:63–69

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health (R21 AI137462-01A1 to KPR and R01AI150761-01A1 to KS), the Ted Nash Long Life Foundation, The Jasper L. and Jack Denton Wilson Foundation and the Department of Defense (MIDRP W0318_19_NM_PP) to KPR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendra Rumbaugh .

Editor information

Editors and Affiliations

Ethics declarations

The authors have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Redman, W., Fleming, D., Sauer, K., Rumbaugh, K. (2022). Clinical Translation of Biofilm Dispersal Agents. In: Richter, K., Kragh, K.N. (eds) Antibiofilm Strategies. Springer Series on Biofilms, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-031-10992-8_6

Download citation

Publish with us

Policies and ethics