Skip to main content

Recommendation via Collaborative Diffusion Generative Model

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2022)

Abstract

Despite the success of classical collaborative filtering (CF) methods in the recommendation systems domain, we point out two issues that essentially limit this class of models. Firstly, most classical CF models predominantly yield weak collaborative signals, which makes them deliver suboptimal recommendation performance. Secondly, most classical CF models produce unsatisfactory latent representations resulting in poor model generalization and performance. To address these limitations, this paper presents the Collaborative Diffusion Generative Model (CODIGEM), the first-ever denoising diffusion probabilistic model (DDPM)-based CF model. CODIGEM effectively models user-item interactions data by obtaining the intricate and non-linear patterns to generate strong collaborative signals and robust latent representations for improving the model’s generalizability and recommendation performance. Empirically, we demonstrate that CODIGEM is a very efficient generative CF model, and it outperforms several classical CF models on several real-world datasets. Moreover, we illustrate through experimental validation the settings that make CODIGEM provide the most significant recommendation performance, highlighting the importance of using the DDPM in recommendation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/WorldChanger01/CODIGEM.

  2. 2.

    https://grouplens.org/datasets/movielens/1m/.

  3. 3.

    https://grouplens.org/datasets/movielens/20m/.

  4. 4.

    http://jmcauley.ucsd.edu/data/amazon/.

References

  1. Chen, C., Zhang, M.I.N.: Efficient neural matrix factorization without sampling. ACM Trans. Inf. Syst. 38(2), 1–28 (2020)

    MathSciNet  Google Scholar 

  2. Chen, J., Zhao, C., Uliji, Chen, L.: Collaborative filtering recommendation algorithm based on user correlation and evolutionary clustering. Complex Intell. Syst. 6(1), 147–156 (2020). https://doi.org/10.1007/s40747-019-00123-5

  3. Chen, S., Peng, Y.: Matrix factorization for recommendation with explicit and implicit feedback. Knowl. Based Syst. (2018). https://doi.org/10.1016/j.knosys.2018.05.040

    Article  Google Scholar 

  4. Dacrema, M.F., Cremonesi, P., Jannach, D.: Are we really making much progress? A worrying analysis of recent neural recommendation approaches. In: Proceedings of the 13th ACM Conference on Recommender Systems, pp. 101–109. RecSys 2019, Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3298689.3347058

  5. Deshpande, M., Karypis, G.: Item-based top- N recommendation algorithms. ACM Trans. Inf. Syst. (2004). https://doi.org/10.1145/963770.963776

    Article  Google Scholar 

  6. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. CoRR abs/2105.05233 (2021)

    Google Scholar 

  7. Dieng, A.B., Kim, Y., Rush, A.M., Blei, D.M.: Avoiding latent variable collapse with generative skip models. In: AISTATS Proceedings of Machine Learning Research, vol. 89, pp. 2397–2405, PMLR (2019)

    Google Scholar 

  8. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web - WWW 2017, pp. 173–182 (2017). DOI: https://doi.org/10.1145/3038912.3052569

  9. He, X., Zhang, H., Kan, M.Y., Chua, T.S.: Fast matrix factorization for online recommendation with implicit feedback. In: SIGIR 2016 - Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 549–558 (2016). https://doi.org/10.1145/2911451.2911489

  10. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS (2020)

    Google Scholar 

  11. Ho, J., Saharia, C., Chan, W., Fleet, D.J., Norouzi, M., Salimans, T.: Cascaded diffusion models for high fidelity image generation. J. Mach. Learn. Res. 23, 47:1–47:33 (2022)

    Google Scholar 

  12. Hu, Y., Volinsky, C., Koren, Y.: Collaborative filtering for implicit feedback datasets. In: Proceedings - IEEE International Conference on Data Mining, ICDM, pp. 263–272. IEEE (2008). https://doi.org/10.1109/ICDM.2008.22

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (Poster) (2015)

    Google Scholar 

  14. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: 2nd International Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings, pp. 1–14 (2014)

    Google Scholar 

  15. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Recommender Systems Handbook, Second Edn., pp. 77–118. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6-3

  16. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009). https://doi.org/10.1109/MC.2009.263

    Article  Google Scholar 

  17. Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders for collaborative filtering Dawen. WWW (2018). https://doi.org/10.1145/3178876.3186150

    Article  Google Scholar 

  18. Ma, J., Zhou, C., Cui, P., Yang, H., Zhu, W.: Learning disentangled representations for recommendation. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/file/a2186aa7c086b46ad4e8bf81e2a3a19b-Paper.pdf

  19. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: UAI 2012, pp. 452–461 (2012). http://arxiv.org/abs/1205.2618

  20. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: Advances in Neural Information Processing Systems, vol. 20, pp. 1257–1264 (2007). https://doi.org/10.1145/1390156.1390267

  21. Sohl-Dickstein, J., Weiss, E.A., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: ICML. JMLR Workshop and Conference Proceedings, vol. 37, pp. 2256–2265. JMLR.org (2015)

    Google Scholar 

  22. Zhang, Q., Lu, J., Jin, Y.: Artificial intelligence in recommender systems. Complex Intell. Syst. 7(1), 439–457 (2021)

    Google Scholar 

  23. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a survey and new perspectives. ACM Comput. Surv. (CSUR) 52(1), 1–35 (2019). http://arxiv.org/abs/1707.07435

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 62176043, No. 62072077 and No. 62102326) and the Key Research and Development Project of Sichuan Province (Grant No. 2022YFG0314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Walker, J., Zhong, T., Zhang, F., Gao, Q., Zhou, F. (2022). Recommendation via Collaborative Diffusion Generative Model. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds) Knowledge Science, Engineering and Management. KSEM 2022. Lecture Notes in Computer Science(), vol 13370. Springer, Cham. https://doi.org/10.1007/978-3-031-10989-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10989-8_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10988-1

  • Online ISBN: 978-3-031-10989-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics