Skip to main content

Spatial Semantic Learning for Travel Time Estimation

  • 374 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 13370)

Abstract

Travel time estimation is a crucial and fundamental problem in Intelligent Transportation Systems (ITS), which benefits multiple downstream applications such as route planning, ride-sharing and taxi dispatching. Most previous work mainly focuses on the spatial space of a single form, which are incomplete representations of trajectories thus leading to inaccurate estimation results because multi-semantic context information has not been fully extracted and only one form of spatial representations are exploited. Additionally, many researchers use recurrent neural networks to extract temporal dependencies inside trajectories, which leads to uneven allocation of weight and brings about time-consuming iterative propagation problems. In this paper, we propose a Spatial Semantic learning model for Travel time Estimation (SSTE), to generate multi-view spatial representations for trajectories. This model represents trajectories in Euclidean space and non-Euclidean space simultaneously to learn different spatial representations from the latent road networks. Furthermore, a self-supervised segment embedding module named Seg2Vec is designed to produce spatial semantic segment embeddings. Seg2Vec exploits edge-level semantic representations of segments in non-Euclidean space, which takes road type and co-occurrence into consideration simultaneously. A sequence learning component with high computational efficiency is utilized to aggregate spatiotemporal relations, multi-semantic segment embeddings, and external properties of the query trajectory. Extensive experiments are conducted on two real-world trajectory datasets. The experimental results demonstrate that our SSTE significantly outperforms existing models.

Keywords

  • Sequence learning
  • Segment embedding
  • Spatial semantic learning
  • Travel time estimation
  • Intelligent transportation system

Supported by the National Natural Science Foundation of China (71901011, U1811463, 51991391, 51991395).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-10989-8_2
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-10989-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Notes

  1. 1.

    This is available at https://www.kaggle.com/crailtap/taxi-trajectory.

  2. 2.

    This is available at https://challenge.datacastle.cn/v3/cmptDetail.html?id=175.

References

  1. Ayhan, S., Costas, P., Samet, H.: Predicting estimated time of arrival for commercial flights. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 33–42 (2018)

    Google Scholar 

  2. Chen, T., Guestrin, C.: XGBOOST: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  4. Du, B., Liu, C., Zhou, W., Hou, Z., Xiong, H.: Catch me if you can: detecting pickpocket suspects from large-scale transit records. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 87–96 (2016)

    Google Scholar 

  5. Endo, Y., Nishida, K., Toda, H., Sawada, H.: Predicting destinations from partial trajectories using recurrent neural network. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017, Part I. LNCS (LNAI), vol. 10234, pp. 160–172. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57454-7_13

    CrossRef  Google Scholar 

  6. Fang, X., Huang, J., Wang, F., Zeng, L., Liang, H., Wang, H.: ConSTGAT: contextual spatial-temporal graph attention network for travel time estimation at Baidu maps. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2697–2705 (2020)

    Google Scholar 

  7. Fu, T.y., Lee, W.C.: DeepIST: deep image-based spatio-temporal network for travel time estimation. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 69–78 (2019)

    Google Scholar 

  8. Fu, T.Y., Lee, W.C.: TremBR: exploring road networks for trajectory representation learning. ACM Trans. Intell. Syst. Technol. (TIST) 11(1), 1–25 (2020)

    CrossRef  Google Scholar 

  9. Gao, R., et al.: Aggressive driving saves more time? Multi-task learning for customized travel time estimation. In: IJCAI, pp. 1689–1696 (2019)

    Google Scholar 

  10. Hong, H., et al.: HetETA: heterogeneous information network embedding for estimating time of arrival. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2444–2454 (2020)

    Google Scholar 

  11. Jindal, I., Chen, X., Nokleby, M., Ye, J., et al.: A unified neural network approach for estimating travel time and distance for a taxi trip. arXiv preprint arXiv:1710.04350 (2017)

  12. Li, X., Li, W., Xu, Y.: Human age prediction based on DNA methylation using a gradient boosting regressor. Genes 9(9), 424 (2018)

    CrossRef  Google Scholar 

  13. Li, Y., Fu, K., Wang, Z., Shahabi, C., Ye, J., Liu, Y.: Multi-task representation learning for travel time estimation. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1695–1704 (2018)

    Google Scholar 

  14. Liaw, A., Wiener, M., et al.: Classification and regression by randomForest. R news 2(3), 18–22 (2002)

    Google Scholar 

  15. Lin, X., Wang, Y., Xiao, X., Li, Z., Bhowmick, S.S.: Path travel time estimation using attribute-related hybrid trajectories network. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 1973–1982 (2019)

    Google Scholar 

  16. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. arXiv preprint arXiv:1310.4546 (2013)

  17. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  18. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  19. Rahmani, M., Jenelius, E., Koutsopoulos, H.N.: Route travel time estimation using low-frequency floating car data. In: 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), pp. 2292–2297. IEEE (2013)

    Google Scholar 

  20. Siripanpornchana, C., Panichpapiboon, S., Chaovalit, P.: Travel-time prediction with deep learning. In: 2016 IEEE Region 10 Conference (TENCON), pp. 1859–1862. IEEE (2016)

    Google Scholar 

  21. Wang, D., Zhang, J., Cao, W., Li, J., Zheng, Y.: When will you arrive? Estimating travel time based on deep neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  22. Wang, H., Tang, X., Kuo, Y.H., Kifer, D., Li, Z.: A simple baseline for travel time estimation using large-scale trip data. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–22 (2019)

    Google Scholar 

  23. Wang, Y., Zheng, Y., Xue, Y.: Travel time estimation of a path using sparse trajectories. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 25–34 (2014)

    Google Scholar 

  24. Wang, Z., Fu, K., Ye, J.: Learning to estimate the travel time. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 858–866 (2018)

    Google Scholar 

  25. Weisberg, S.: Applied Linear Regression, vol. 528. Wiley, New York (2005)

    CrossRef  Google Scholar 

  26. Zhang, B., Wei, Z., Ren, J., Cheng, Y., Zheng, Z.: An empirical study on predicting blood pressure using classification and regression trees. IEEE Access 6, 21758–21768 (2018)

    CrossRef  Google Scholar 

  27. Zhang, H., Wu, H., Sun, W., Zheng, B.: DeepTravel: a neural network based travel time estimation model with auxiliary supervision. arXiv preprint arXiv:1802.02147 (2018)

  28. Zygouras, N., Panagiotou, N., Li, Y., Gunopulos, D., Guibas, L.: HTTE: a hybrid technique for travel time estimation in sparse data environments. In: Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 99–108 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leilei Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Sun, L., Du, B., Han, L. (2022). Spatial Semantic Learning for Travel Time Estimation. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds) Knowledge Science, Engineering and Management. KSEM 2022. Lecture Notes in Computer Science(), vol 13370. Springer, Cham. https://doi.org/10.1007/978-3-031-10989-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10989-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10988-1

  • Online ISBN: 978-3-031-10989-8

  • eBook Packages: Computer ScienceComputer Science (R0)