Skip to main content

MTN-Net: A Multi-Task Network for Detection and Segmentation of Thyroid Nodules in Ultrasound Images

  • 411 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 13370)

Abstract

Automatic detection and segmentation of thyroid nodules is crucial for the identification of benign and malignant nodules in computer-aided diagnosis (CAD) systems. However, the diverse sizes of thyroid nodules in ultrasound images, nodules with complex internal textures, and multiple nodules pose many challenges for automatic detection and segmentation of thyroid nodules in ultrasound images. In this paper we propose a multi-task network based on Trident network, called MTN-Net, to accurately detect and segment the thyroid nodules in ultrasound images. The backbone of MTN-Net can generate scale-specific feature maps through trident blocks with different receptive fields to detect thyroid nodules with different sizes. In addition, a novel semantic segmentation branch is embedded into the detection network for the task of segmenting thyroid nodules, which is also valid for the complete segmentation of nodules with complex textures. Furthermore, we propose an improved NMS method, named TN-NMS, for combining thyroid detection results from multiple branches, which can effectively suppress falsely detected internal nodules. The experimental results show that MTN-Net outperforms the State-of-the-Arts methods in terms of detection and segmentation accuracy on both the public TN3K dataset and the public DDTI dataset, which indicates that our method can be applied to CAD systems with practical clinical significance.

Keywords

  • Ultrasound image
  • Thyroid nodule
  • Detection
  • Segmentation
  • Multi-task network

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-10989-8_18
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-10989-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Haugen, B.R., et al.: 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26(1), 1–133 (2016)

    MathSciNet  CrossRef  Google Scholar 

  2. Savelonas, M.A., Iakovidis, D.K., Legakis, I., Maroulis, D.: Active contours guided by echogenicity and texture for delineation of thyroid nodules in ultrasound images. IEEE Trans. Inf. Technol. Biomed. 13(4), 519–527 (2008)

    CrossRef  Google Scholar 

  3. Chen, J., You, H., Li, K.: A review of thyroid gland segmentation and thyroid nodule segmentation methods for medical ultrasound images. Comput. Methods Progr. Biomed. 185, 105329 (2020)

    CrossRef  Google Scholar 

  4. Li, H., et al.: An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images. Sci. Rep. 8(1), 1–12 (2018)

    Google Scholar 

  5. Liu, R., Zhou, S., Guo, Y., Wang, Y., Chang, C.: Nodule localization in thyroid ultrasound images with a joint-training convolutional neural network. J. Digital Imaging 33(5), 1266–1279 (2020)

    CrossRef  Google Scholar 

  6. Abdolali, F., Kapur, J., Jaremko, J.L., Noga, M., Hareendranathan, A.R., Punithakumar, K.: Automated thyroid nodule detection from ultrasound imaging using deep convolutional neural networks. Comput. Biol. Med. 122, 103871 (2020)

    CrossRef  Google Scholar 

  7. Song, W., et al.: Multitask cascade convolution neural networks for automatic thyroid nodule detection and recognition. IEEE J. Biomed. Health Inform. 23(3), 1215–1224 (2018)

    CrossRef  Google Scholar 

  8. Shahroudnejad, A., et al.: TUN-Det: a novel network for thyroid ultrasound nodule detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 656–667. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_62

    CrossRef  Google Scholar 

  9. Ying, X., et al.: Thyroid nodule segmentation in ultrasound images based on cascaded convolutional neural network. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11306, pp. 373–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04224-0_32

    CrossRef  Google Scholar 

  10. Wang, M., et al.: Automatic segmentation and classification of thyroid nodules in ultrasound images with convolutional neural networks. In: Shusharina, N., Heinrich, M.P., Huang, R. (eds.) MICCAI 2020. LNCS, vol. 12587, pp. 109–115. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71827-5_14

    CrossRef  Google Scholar 

  11. Gong, H., et al.: Multi-task learning for thyroid nodule segmentation with thyroid region prior. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 257–261. IEEE (2021) https://doi.org/10.1109/ISBI48211.2021.9434087

  12. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 1–9 (2015)

    Google Scholar 

  13. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017). https://doi.org/10.48550/arXiv.1612.03144

  14. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017). https://doi.org/10.48550/arXiv.1703.06870

  15. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    CrossRef  Google Scholar 

  16. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018). https://doi.org/10.48550/arXiv.1802.02611

  17. Li, Y., Chen, Y., Wang, N., Zhang, Z.: Scale-aware trident networks for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6054–6063 (2019). https://doi.org/10.1109/ICCV.2019.00615

  18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015). https://doi.org/10.1109/CVPR.2015.7298965

  19. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015). https://doi.org/10.1109/ICCV.2015.169

  20. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS-improving object detection with one line of code. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5561–5569 (2017). https://doi.org/10.1109/ICCV.2017.593

  21. Pedraza, L., Vargas, C., Narváez, F., Durán, O., Muñoz, E., Romero, E.: An open access thyroid ultrasound image database. In: 10th International Symposium on Medical Information Processing and Analysis. vol. 9287, p. 92870W. International Society for Optics and Photonics (2015). https://doi.org/10.1117/12.2073532

  22. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2

  23. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    CrossRef  Google Scholar 

  24. Cai, Z., Vasconcelos, N.: Cascade R-CNN: high quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1483–1498 (2019)

    CrossRef  Google Scholar 

  25. Huang, Z., Huang, L., Gong, Y., Huang, C., Wang, X.: Mask scoring R-CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6409–6418 (2019). https://doi.org/10.1109/CVPR.2019.00657

  26. Kirillov, A., Wu, Y., He, K., Girshick, R.: Pointrend: image segmentation as rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9799–9808 (2020). https://doi.org/10.1109/CVPR42600.2020.00982

  27. Chen, K., et al.: MMDetection: Open MMLab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)

Download references

Acknowledgements

This research is funded by East China Normal University-Qiniu Intelligent Learning Joint Laboratory. The computation is supported by ECNU Multifunctional Platform for Innovation (001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxin Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Chen, L., Zheng, W., Hu, W. (2022). MTN-Net: A Multi-Task Network for Detection and Segmentation of Thyroid Nodules in Ultrasound Images. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds) Knowledge Science, Engineering and Management. KSEM 2022. Lecture Notes in Computer Science(), vol 13370. Springer, Cham. https://doi.org/10.1007/978-3-031-10989-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10989-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10988-1

  • Online ISBN: 978-3-031-10989-8

  • eBook Packages: Computer ScienceComputer Science (R0)