Skip to main content

MEOD: A Robust Multi-stage Ensemble Model Based on Rank Aggregation and Stacking for Outlier Detection

  • 378 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 13370)

Abstract

In ensemble-based unsupervised outlier detection, the lack of ground truth makes the combination of basic outlier detectors a challenging task. The existing outlier ensembles usually use certain fusion rules (majority voting, averaging) to aggregate base detectors, which results in relatively low model accuracy and robustness. To overcome this problem, in this research, we propose a robust Multi-stage Ensemble model based on rank aggregation and stacking for Outlier Detection (MEOD). The proposed model uses multiple unsupervised outlier detection algorithms to form a base detector pool. Such a pool can be utilized for extracting useful representations from the train set and integrating base detector results using a ranking aggregation-based approach. To further optimize the proposed model, a stacking-based dynamic classifier selection ensemble model is also proposed, and the best-behaved classifier is adaptively selected as the base learner in the stacking stage on different datasets. Some extensive experiments are also committed to prove that MEOD outperforms the other seven state-of-the-art benchmarks in most cases.

Keywords

  • Outlier detection
  • Anomaly detection
  • Ensemble model
  • Representation learning
  • Rank aggregation
  • Stacking approach

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-10989-8_17
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-10989-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    http://odds.cs.stonybrook.edu/.

References

  1. Aggarwal, C.C.: Outlier ensembles: position paper. ACM SIGKDD Explor. Newsl. 14(2), 49–58 (2013)

    CrossRef  Google Scholar 

  2. Aggarwal, C.C., Sathe, S.: Theoretical foundations and algorithms for outlier ensembles. ACM SIGKDD Explor. Newsl. 17(1), 24–47 (2015)

    CrossRef  Google Scholar 

  3. Akoglu, L., Tong, H., Vreeken, J., Faloutsos, C.: Fast and reliable anomaly detection in categorical data. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 415–424 (2012)

    Google Scholar 

  4. Boukerche, A., Zheng, L., Alfandi, O.: Outlier detection: methods, models, and classification. ACM Comput. Surv. (CSUR) 53(3), 1–37 (2020)

    CrossRef  Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    CrossRef  Google Scholar 

  6. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)

    Google Scholar 

  7. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  8. Cheng, Y., Xu, Y., Zhong, H., Liu, Y.: HS-TCN: a semi-supervised hierarchical stacking temporal convolutional network for anomaly detection in IoT. In: 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC), pp. 1–7. IEEE (2019)

    Google Scholar 

  9. Dorogush, A.V., Ershov, V., Gulin, A.: Catboost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363 (2018)

  10. Forestier, G., Wemmert, C.: Semi-supervised learning using multiple clusterings with limited labeled data. Inf. Sci. 361, 48–65 (2016)

    CrossRef  Google Scholar 

  11. Freund, Y., Schapire, R.E., et al.: Experiments with a new boosting algorithm. In: ICML, vol. 96, pp. 148–156. Citeseer (1996)

    Google Scholar 

  12. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232 (2001)

    Google Scholar 

  13. Hosmer, D.W., Jr., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression, vol. 398. Wiley, Hoboken (2013)

    CrossRef  Google Scholar 

  14. Ke, G., et al.: Lightgbm: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  15. Kolde, R., Laur, S., Adler, P., Vilo, J.: Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics 28(4), 573–580 (2012)

    CrossRef  Google Scholar 

  16. Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: Loop: local outlier probabilities. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 1649–1652 (2009)

    Google Scholar 

  17. Lai, K.H., Zha, D., Xu, J., Zhao, Y., Wang, G., Hu, X.: Revisiting time series outlier detection: definitions and benchmarks. In: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1) (2021)

    Google Scholar 

  18. Li, Y., Song, Y., Jia, L., Gao, S., Li, Q., Qiu, M.: Intelligent fault diagnosis by fusing domain adversarial training and maximum mean discrepancy via ensemble learning. IEEE Trans. Industr. Inf. 17(4), 2833–2841 (2020)

    CrossRef  Google Scholar 

  19. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 6(1), 1–39 (2012)

    CrossRef  Google Scholar 

  20. Ma, J., Perkins, S.: Time-series novelty detection using one-class support vector machines. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 1741–1745. IEEE (2003)

    Google Scholar 

  21. Najafi, M., He, L., Philip, S.Y.: Outlier-robust multi-aspect streaming tensor completion and factorization. In: IJCAI, pp. 3187–3194 (2019)

    Google Scholar 

  22. Wan, F., Guo, G., Zhang, C., Guo, Q., Liu, J.: Outlier detection for monitoring data using stacked autoencoder. IEEE Access 7, 173827–173837 (2019)

    CrossRef  Google Scholar 

  23. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)

    CrossRef  Google Scholar 

  24. Zhao, Y., Nasrullah, Z., Li, Z.: PyOD: a python toolbox for scalable outlier detection. arXiv preprint arXiv:1901.01588 (2019)

  25. Zhu, J., Li, X., Gao, C., Wang, Z., Kurths, J.: Unsupervised community detection in attributed networks based on mutual information maximization. New J. Phys. 23(11), 113016 (2021)

    MathSciNet  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Jiang, Z., Zhang, F., Xu, H., Tao, L., Zhang, Z. (2022). MEOD: A Robust Multi-stage Ensemble Model Based on Rank Aggregation and Stacking for Outlier Detection. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds) Knowledge Science, Engineering and Management. KSEM 2022. Lecture Notes in Computer Science(), vol 13370. Springer, Cham. https://doi.org/10.1007/978-3-031-10989-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10989-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10988-1

  • Online ISBN: 978-3-031-10989-8

  • eBook Packages: Computer ScienceComputer Science (R0)