Skip to main content

Advanced Neuroimaging for Spine Metastasis

  • Chapter
  • First Online:
Functional Neuroradiology

Abstract

A multidisciplinary approach with medical oncology, radiation oncology, surgery, and interventional radiology is required for optimal treatment of spinal metastasis while offering pain relief, preservation of neurologic function, and prevention of morbidity. Since 2013, the multidisciplinary process has been incorporated into a more comprehensive framework, called the Neurologic, Oncologic, Mechanical, and Systemic (NOMS) decision framework. NOMS incorporates treatment options such as interventional procedures, external beam radiation, stereotactic radiosurgery, and open surgery. Imaging plays a key role in this framework, especially in Spinal Instability Neoplastic Scoring, which assigns score based on location, lytic vs. blastic vs. mixed features, spinal alignment, vertebral body collapse, and involvement of the posterior vertebral elements. In nearly all patients with spinal metastases, imaging plays a central role in diagnosis, treatment planning, and follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cancer Statistics. NIH National Cancer Institute. https://www.cancer.gov/about-cancer/understanding/statistics. Accessed 27 Apr 2018.

  2. Witham TF, Khavkin YA, Gallia GL, Wolinsky J-P, Gokaslan ZL. Surgery insight: current management of epidural spinal cord compression from metastatic spine disease. Nat Clin Pract Neurol. 2006;2(2):87–94.

    PubMed  Google Scholar 

  3. Schiff D. Spinal cord compression. Neurol Clin. 2003;21(1):67–86.

    PubMed  Google Scholar 

  4. Aaron AD. The management of cancer metastatic to bone. JAMA. 1994;272(15):1206–9.

    CAS  PubMed  Google Scholar 

  5. Buhmann KS, Becker C, Duerr HR, Reiser M, Baur-Melnyk A. Detection of osseous metastases of the spine: comparison of high resolution multi-detector CT with MRI. Eur J Radiol. 2009;69(3):567–73.

    Google Scholar 

  6. Donnelly DJ, Abd-El-Barr MM, Lu Y. Minimally invasive muscle sparing posterior only approach for lumbar circumferential decompression and stabilization to treat spine metastasis-technical report. World Neurosurg. 2015;84(5):1484–90.

    PubMed  Google Scholar 

  7. Shah LM, Salzman KL. Imaging of spinal metastatic disease. Int J Surg Oncol. 2011;2011:769753.

    PubMed  PubMed Central  Google Scholar 

  8. Wong DA, Fornasier VL, Macnab I. Spinal metastases: the obvious, the occult, and the imposters. Spine (Phila Pa 1976). 1990;15(1):1–4.

    CAS  PubMed  Google Scholar 

  9. Maralani PJ, Lo SS, Redmond K, Soliman H, Myrehaug S, Husain ZA, et al. Spinal metastases: multimodality imaging in diagnosis and stereotactic body radiation therapy planning. Future Oncol. 2017;13(1):77–91.

    Google Scholar 

  10. Thomas SJ. Relative electron density calibration of CT scanners for radiotherapy treatment planning. Br J Radiol. 1999;72(860):781–6.

    CAS  PubMed  Google Scholar 

  11. Sahgal A, Bilsky M, Chang EL, Ma L, Yamada Y, Rhines LD, et al. Stereotactic body radiotherapy for spinal metastases: current status, with a focus on its application in the postoperative patient. J Neurosurg Spine. 2011;14(2):151–66.

    PubMed  Google Scholar 

  12. Thibault I, Chang EL, Sheehan J, Ahluwalia MS, Guckenberger M, Sohn MJ, et al. Response assessment after stereotactic body radiotherapy for spinal metastasis: a report from the SPIne response assessment in Neuro-Oncology (SPINO) group. Lancet Oncol. 2015;16(16):e595–603.

    PubMed  Google Scholar 

  13. Cox BW, Spratt DE, Lovelock M, Bilsky MH, Lis E, Ryu S, Sheehan J, et al. International spine radiosurgery consortium consensus guidelines for target volume definition in spinal stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2012;83(5):597–605.

    Google Scholar 

  14. Soliman M, Taunk NK, Simons RE. Anatomic and functional imaging in the diagnosis of spine metastases and response assessment after spine radiosurgery. Neurosurg Focus. 2017;42(1):E5.

    PubMed  Google Scholar 

  15. Heindel W, Gübitz R, Vieth V, Weckesser M, Schober O, Schäfers M. The diagnostic imaging of bone metastases. Dtsch Arztebl Int. 2014;111:741–7.

    PubMed  PubMed Central  Google Scholar 

  16. Carroll KW, Feller JF, Tirman PF. Useful internal standards for distinguishing infiltrative marrow pathology from hematopoietic marrow at MRI. J Magn Reson Imaging. 1997;7(2):394–8.

    CAS  PubMed  Google Scholar 

  17. Ciray I, Lindman H, Aström GK, Wanders A, Bergh J, Ahlström HK. Effect of granulocyte colony-stimulating factor (G-CSF)-supported chemotherapy on MR imaging of normal red bone marrow in breast cancer patients with focal bone metastases. Acta Radiol. 2003;44(5):472–84.

    CAS  PubMed  Google Scholar 

  18. Moulopolos LA, Yoshimitsu K, Johnston DA, Leeds NE, Libshitz HI. MR prediction of benign and malignant vertebral compression fractures. J Magn Reson Imaging. 1996;6(4):667–74.

    Google Scholar 

  19. Baker LL, Goodman SB, Perkash I, Lane B, Enzmann DR. Benign versus pathologic compression fractures of vertebral bodies: assessment with conventional spin-echo, chemical-shift, and STIR MR imaging. Radiology. 1990;174(2):495–502.

    CAS  PubMed  Google Scholar 

  20. Schmidt MA, Payne GS. Radiotherapy planning using MRI. Phys Med Biol. 2015;60(22):323–61.

    Google Scholar 

  21. Hayter CL, Koff MF, Shah P, Koch KM, Miller TT, Potter HG. MRI after arthroplasty: comparison of MAVRIC and conventional fast spin-echo techniques. Am J Roentgenol. 2011;197(3):405–11.

    Google Scholar 

  22. Sutter R, Ulbrich EJ, Jellus V, Nittka M, Pfirrmann CW. Reduction of metal artifacts in patients with total hip arthroplasty with slice-encoding metal artifact correction and view-angle tilting MR imaging. Radiology. 2012;265(1):204–14.

    PubMed  Google Scholar 

  23. Choi SJ, Koch KM, Hargreaves BA, Stevens KJ, Gold GE. Metal artifact reduction with MAVRIC SL at 3-T MRI in patients with hip arthroplasty. Am J Roentgenol. 2015;204(1):140–7.

    Google Scholar 

  24. Moulopoulos LA, Maris TG, Papanikolaou N, Panagi G, Vlahos L, Dimopoulos MA. Detection of malignant bone marrow involvement with dynamic contrast-enhanced magnetic resonance imaging. Ann Oncol. 2003;14(1):152–8.

    CAS  PubMed  Google Scholar 

  25. Bollow M, Knauf W, Korfel A, Taupitz M, Schilling A, Wolf KJ, et al. Initial experience with dynamic MR imaging in evaluation of normal bone marrow versus malignant bone marrow infiltrations in humans. J Magn Reson Imaging. 1997;7(1):241–50.

    CAS  PubMed  Google Scholar 

  26. Hawighorst H, Libicher M, Knopp MV, Moehler T, Kauffmann GW, van Kaick G. Evaluation of angiogenesis and perfusion of bone marrow lesions: role of semiquantitative and quantitative dynamic MRI. J Magn Reson Imaging. 1999;10(3):286–94.

    CAS  PubMed  Google Scholar 

  27. Chen WT, Shih TT, Chen RC, Lo HY, Chou CT, Lee JM, et al. Blood perfusion of vertebral lesions evaluated with gadolinium-enhanced dynamic MRI: in comparison with compression fracture and metastasis. J Magn Reson Imaging. 2002;15(3):308–14.

    PubMed  Google Scholar 

  28. Tokuda O, Hayashi N, Taguchi K, Matsunaga N. Dynamic contrast-enhanced perfusion MR imaging of diseased vertebrae: analysis of three parameters and the distribution of the time-intensity curve patterns. Skeletal Radiol. 2005;34(10):632–8.

    PubMed  Google Scholar 

  29. Arevalo-Perez J, Peck KK, Lyo JK, Holodny AI, Lis E, Karimi S. Differentiating benign from malignant vertebral fractures using T1-weighted dynamic contrast-enhanced MRI. J Magn Reson Imaging. 2015;42(4):1039–47.

    PubMed  PubMed Central  Google Scholar 

  30. Khadem NR, Karimi S, Peck KK, Yamada Y, Lis E, Lyo J, et al. Characterizing hypervascular and hypovascular metastases and normal bone marrow of the spine using dynamic contrast-enhanced MR imaging. Am J Neuroradiol. 2012;33:2178–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol. 2007;188(6):1622–35.

    Google Scholar 

  32. Shimofusa R, Fujimoto H, Akamata H, Motoori K, Yamamoto S, Ueda T, et al. Diffusion-weighted imaging of prostate cancer. J Comput Assist Tomogr. 2005;29(2):149–53.

    PubMed  Google Scholar 

  33. Park MJ, Cha ES, Kang BJ, Ihn YK, Baik JH. The role of diffusion-weighted imaging and the apparent diffusion coefficient (ADC) values for breast tumors. Korean J Radiol. 2007;8(5):390–6.

    PubMed  PubMed Central  Google Scholar 

  34. Tanenbaum LN. Clinical applications of diffusion imaging in the spine. Magn Reson Imaging Clin N Am. 2013;21:299–320.

    PubMed  Google Scholar 

  35. Luboldt W, Küfer R, Blumstein N, Toussaint TL, Kluge A, Seemann MD, et al. Prostrate carcinoma: diffusion-weighted imaging as potential alternative to conventional MR and 11C-choline PET/CT for detection of bone metastases. Radiology. 2008;249:1017–25.

    PubMed  Google Scholar 

  36. Parag Y, Delman B, Pawha P, Tanenbaum L. Diffusion weighted imaging facilitates detection of spinal metastases and assists in the diagnosis of equivocal lesions. In: Proceedings American Society of Spine Radiology Annual Meeting 2010, American Society of Neuroradiology Annual Meeting 2010, European College of Radiology Annual Meeting. Vienna: ESR; 2010.

    Google Scholar 

  37. Kessler J, Pawha P, Shpilberg K, Tanenbaum L. Diffusion weighted imaging facilitates detection of spinal multiple myeloma and assists in diagnosing equivocal lesions. In: Proceedings American Society of Spine Radiology Annual Meeting 2011, American Society of Neuroradiology Annual Meeting 2011, European College of Radiology Annual Meeting. Vienna: ESR; 2011.

    Google Scholar 

  38. Frager D, Elkin C, Swerdlow M, Bloch S. Subacute osteoporotic compression fracture: misleading magnetic resonance appearance. Skeletal Radiol. 1988;17(2):123–6.

    CAS  PubMed  Google Scholar 

  39. Rupp RE, Ebraheim NA, Coombs RJ. Magnetic resonance imaging differentiation of compression spine fractures or vertebral lesions caused by osteoporosis or tumor. Spine (Phila Pa 1976). 1995;20(23):2499–503.

    CAS  PubMed  Google Scholar 

  40. Bonekamp S, Corona-Villalobos CP, Kamel IR. Oncologic applications of diffusion-weighted MRI in the body. J Magn Reson Imaging. 2012;35:257–79.

    PubMed  Google Scholar 

  41. Herneth AM, Philipp MO, Naude J, Funovics M, Beichel RR, Bammer R, et al. Vertebral metastases: assessment with apparent diffusion coefficient. Radiology. 2002;225:889–94.

    PubMed  Google Scholar 

  42. Pozzi G, Garcia Parra C, Stradiotti P, Tien TV, Luzzati A, Zerbi A. Diffusion-weighted MR imaging in differentiation between osteoporotic and neoplastic vertebral fractures. Eur Spine J. 2012;21:S123–7.

    PubMed  Google Scholar 

  43. Maeda M, Sakuma H, Maier SE, Takeda K. Quantitative assessment of diffusion abnormalities in benign and malignant vertebral compression fractures by line scan diffusion-weighted imaging. AJR Am J Roentgenol. 2003;181(5):1203–9.

    PubMed  Google Scholar 

  44. Balliu E, Vilanova JC, Peláez I, Puig J, Remollo S, Barceló C, et al. Diagnostic value of apparent diffusion coefficients to differentiate benign from malignant vertebral bone marrow lesions. Eur J Radiol. 2009;69(3):560–6.

    CAS  PubMed  Google Scholar 

  45. Sung JK, Jee WH, Jung JY, Choi M, Lee SY, Kim YH, et al. Differentiation of acute osteoporotic and malignant compression fractures of the spine: use of additive qualitative and quantitative axial diffusion-weighted MR imaging to conventional MR imaging at 3.0 T. Radiology. 2014;271(2):488–98.

    PubMed  Google Scholar 

  46. Perry MT, Sebro R. Accuracy of opposed-phase magnetic resonance imaging for the evaluation of treated and untreated spinal metastases. Acad Radiol. 2018;25(7):877–82.

    PubMed  Google Scholar 

  47. Kransdorf MJ, Bridges MD. Current developments and recent advances in musculoskeletal tumor imaging. Semin Musculoskelet Radiol. 2013;17:145–55.

    PubMed  Google Scholar 

  48. Adam SZ, Nikolaidis P, Horowitz JM, Gabriel H, Hammond NA, Patel T, et al. Chemical shift MR imaging of the adrenal gland: principles, pitfalls, and applications. Radiographics. 2016;36:414–32.

    PubMed  Google Scholar 

  49. Disler DG, McCauley TR, Ratner LM, Kesack CD, Cooper JA. In-phase and out-of-phase MR imaging of bone marrow: prediction of neoplasia based on the detection of coexistent fat and water. Am J Roentgenol. 1997;169:1439–47.

    CAS  Google Scholar 

  50. Kenneally BE, Gutowski CJ, Reynolds AW, Morrison WB, Abraham JA. Utility of opposed-phase magnetic resonance imaging in differentiating sarcoma from benign bone lesions. J Bone Oncol. 2015;4:110–4.

    PubMed  PubMed Central  Google Scholar 

  51. Zajick DC, Morrison WB, Schweitzer ME, Parellada JA, Carrino JA. Benign and malignant processes: normal values and differentiation with chemical shift MR imaging in vertebral marrow. Radiology. 2005;237:590–6.

    PubMed  Google Scholar 

  52. Erly WK, Oh ES, Outwater EK. The utility of in-phase/opposed-phase imaging in differentiating malignancy from acute benign compression fractures of the spine. AJNR Am J Neuroradiol. 2006;27:1183–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ragab Y, Emad Y, Gheita T, Mansour M, Abou-Zeid A, Ferrari S, et al. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift {in-phase and out-of phase} MR imaging. Eur J Radiol. 2009;72:125–33.

    PubMed  Google Scholar 

  54. Thawait SK, Marcus MA, Morrison WB, Klufas RA, Eng J, Carrino JA. Research synthesis: what is the diagnostic performance of magnetic resonance imaging to discriminate benign from malignant vertebral compression fractures? Systematic review and meta-analysis. Spine. 2012;37:E736–44.

    PubMed  Google Scholar 

  55. Zajick DC Jr, Morrison WB, Schweitzer ME, Parellada JA, Carrino JA. Benign and malignant processes: normal values and differentiation with chemical shift MR imaging in vertebral marrow. Radiology. 2005;237:590–6.

    PubMed  Google Scholar 

  56. Yoo HJ, Hong SH, Kim DH, Choi JY, Chae HD, Jeong BM, et al. Measurement of fat content in vertebral marrow using a modified Dixon sequence to differentiate benign from malignant processes. J Magn Reson Imaging. 2017;45(5):1534–44.

    PubMed  Google Scholar 

  57. Schmeel FC, Luetkens JA, Enkirch SJ, Feißt A, Endler CH, Schmeel LC, et al. Proton density fat fraction (PDFF) MR imaging for differentiation of acute benign and neoplastic compression fractures of the spine. Eur Radiol. 2018;28(12):5001–9.

    PubMed  Google Scholar 

  58. Kim DH, Yoo HJ, Hong SH, Choi JY, Chae HD, Chung BM. Differentiation of acute osteoporotic and malignant vertebral fractures by quantification of fat fraction with a Dixon MRI sequence. AJR Am J Roentgenol. 2017;209(6):1331–9.

    PubMed  Google Scholar 

  59. Leeman JE, Bilsky M, Laufer I, Folkert MR, Taunk NK, Osborne JR, et al. Detailed spinal axis patterns of failure following SBRT for metastatic spinal sarcoma. Int J Radiat Oncol. 2015;93:E67–8.

    Google Scholar 

  60. Kwee TC, Takahara T, Ochiai R, Nievelstein RAJ, Luijten PR. Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology. Eur Radiol. 2008;18(9):1937–52.

    PubMed  PubMed Central  Google Scholar 

  61. Cappabianca S, Capasso R, Urraro F, Izzo A, Raucci A, Di Franco R, et al. Assessing response to radiation therapy treatment of bone metastases: short-term followup of radiation therapy treatment of bone metastases with diffusion-weighted magnetic resonance imaging. J Radiother. 2014;2014:698127.

    Google Scholar 

  62. Byun WM, Shin SO, Chang Y, Lee SJ, Finsterbusch J, Frahm J. Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. Am J Neuroradiol. 2002;23:906–12.

    PubMed  PubMed Central  Google Scholar 

  63. Messiou C, Collins DJ, Giles S, de Bono JS, Bianchini D, de Souza NM. Assessing response in bone metastases in prostate cancer with diffusion weighted MRI. Eur Radiol. 2011;21:2169–77.

    CAS  PubMed  Google Scholar 

  64. Reischauer C, Froehlich JM, Koh DM, Graf N, Padevit C, John H, et al. Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps–initial observations. Radiology. 2010;257:523–31.

    PubMed  Google Scholar 

  65. Chu S, Karimi S, Peck KK, Yamada Y, Lis E, Lyo J, et al. Measurement of blood perfusion in spinal metastases with dynamic contrast-enhanced magnetic resonance imaging: evaluation of tumor response to radiation therapy. Spine (Phila Pa 1976). 2013;38:E1418–24.

    PubMed  Google Scholar 

  66. Spratt DE, Arevalo-Perez J, Leeman JE, Gerber NK, Folkert M, Taunk NK, et al. Early magnetic resonance imaging biomarkers to predict local control after high dose stereotactic body radiotherapy for patients with sarcoma spine metastases. Spine J. 2016;16:291–8.

    PubMed  PubMed Central  Google Scholar 

  67. Cao Y. The promise of dynamic contrast-enhanced imaging in radiation therapy. Semin Radiat Oncol. 2011;21:147–56.

    PubMed  PubMed Central  Google Scholar 

  68. Rosen MA, Schnall MD. Dynamic contrast-enhanced magnetic resonance imaging for assessing tumor vascularity and vascular effects of targeted therapies in renal cell carcinoma. Clin Cancer Res. 2007;13:770s–6s.

    CAS  PubMed  Google Scholar 

  69. Kumar KA, Peck KK, Karimi S, Lis E, Holdony AI, Bilsky MH, et al. A pilot study evaluating the use of dynamic contrast-enhanced perfusion MRI to predict local recurrence after radiosurgery on spinal metastases. Technol Cancer Res Treat. 2017;16(6):857–65.

    PubMed  PubMed Central  Google Scholar 

  70. Bilsky MH, Laufer I, Fourney DR, Groff M, Schmidt MH, Varga PP, Vrionis FD, Yamada Y, Gerszten PC, Kuklo TR. Reliability analysis of the epidural spinal cord compression scale. J Neurosurg Spine. 2010;13(3):324–8.

    PubMed  Google Scholar 

Further Reading

  • Al-Omair A, Masucci L, Masson-Cote L, et al. Surgical resection of epidural disease improves local control following postoperative spine stereotactic body radiotherapy. Neuro Oncol. 2013;15(10):1413–9.

    PubMed  PubMed Central  Google Scholar 

  • Anand AK, Venkadamanickam G, Punnakal AU, et al. Hypofractionated stereotactic body radiotherapy in spinal metastasis—with or without epidural extension. Clin Oncol (R Coll Radiol). 2015;27(6):345–52.

    CAS  PubMed  Google Scholar 

  • Bate BG, Khan NR, Kimball BY, Gabrick K, Weaver J. Stereotactic radiosurgery for spinal metastases with or without separation surgery. J Neurosurg Spine. 2015;22(4):409–15.

    PubMed  Google Scholar 

  • Chawla S, Schell MC, Milano MT. Stereotactic body radiation for the spine: a review. Am J Clin Oncol. 2013;36(6):630–6.

    PubMed  Google Scholar 

  • Damast S, Wright J, Bilsky M, et al. Impact of dose on local failure rates after image-guided reirradiation of recurrent paraspinal metastases. Int J Radiat Oncol Biol Phys. 2011;81(3):819–26.

    PubMed  Google Scholar 

  • Garg AK, Wang XS, Shiu AS, et al. Prospective evaluation of spinal reirradiation by using stereotactic body radiation therapy: the University of Texas MD Anderson Cancer Center experience. Cancer. 2011;117(15):3509–16.

    PubMed  Google Scholar 

  • Gerszten PC, Burton SA, Ozhasoglu C, Welch WC. Radiosurgery for spinal metastases: clinical experience in 500 cases from a single institution. Spine (Phila Pa 1976). 2007;32(2):193–9.

    PubMed  Google Scholar 

  • Guckenberger M, Mantel F, Gerszten PC, et al. Safety and efficacy of stereotactic body radiotherapy as primary treatment for vertebral metastases: a multi-institutional analysis. Radiat Oncol. 2014;9:226.

    PubMed  PubMed Central  Google Scholar 

  • Kim MS, Kim W, Park IH, et al. Radiobiological mechanisms of stereotactic body radiation therapy and stereotactic radiation surgery. Radiat Oncol J. 2015;33:265–75.

    PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick JP, Kelsey CR, Palta M, et al. Stereotactic body radiotherapy: a critical review for nonradiation oncologists. Cancer. 2014;120(7):942–54.

    PubMed  Google Scholar 

  • Laufer I, Iorgulescu JB, Chapman T, et al. Local disease control for spinal metastases following “separation surgery” and adjuvant hypofractionated or high-dose single-fraction stereotactic radiosurgery: outcome analysis in 186 patients. J Neurosurg Spine. 2013;18(3):207–14.

    PubMed  PubMed Central  Google Scholar 

  • Mahadevan A, Floyd S, Wong E, Jeyapalan S, Groff M, Kasper E. Stereotactic body radiotherapy reirradiation for recurrent epidural spinal metastases. Int J Radiat Oncol Biol Phys. 2011;81(5):1500–5.

    PubMed  Google Scholar 

  • Massicotte E, Foote M, Reddy R, Sahgal A. Minimal access spine surgery (MASS) for decompression and stabilization performed as an out-patient procedure for metastatic spinal tumours followed by spine stereotactic body radiotherapy (SBRT): first report of technique and preliminary outcomes. Technol Cancer Res Treat. 2012;11(1):15–25.

    PubMed  Google Scholar 

  • Quraishi NA, Gokaslan ZL, Boriani S. The surgical management of metastatic epidural compression of the spinal cord. J Bone Jt Surg Br. 2010;92(8):1054–60.

    CAS  Google Scholar 

  • Sahgal A, Ames C, Chou D, et al. Stereotactic body radiotherapy is effective salvage therapy for patients with prior radiation of spinal metastases. Int J Radiat Oncol Biol Phys. 2009;74(3):723–31.

    PubMed  Google Scholar 

  • Sellin JN, Reichardt W, Bishop AJ, et al. Factors affecting survival in 37 consecutive patients undergoing de novo stereotactic radiosurgery for contiguous sites of vertebral body metastasis from renal cell carcinoma. J Neurosurg Spine. 2015;22(1):52–9.

    PubMed  Google Scholar 

  • Yamada Y, Bilsky MH, Lovelock DM, et al. High-dose, single-fraction image-guided intensity-modulated radiotherapy for metastatic spinal lesions. Int J Radiat Oncol Biol Phys. 2008;71(2):484–90.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Sethi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sethi, V., Redmond, K.J., Khan, M. (2023). Advanced Neuroimaging for Spine Metastasis. In: Faro, S.H., Mohamed, F.B. (eds) Functional Neuroradiology. Springer, Cham. https://doi.org/10.1007/978-3-031-10909-6_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10909-6_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10908-9

  • Online ISBN: 978-3-031-10909-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics