Skip to main content

Quantitative T1ρ MR Imaging in Neuroradiology

  • Chapter
  • First Online:
Functional Neuroradiology

Abstract

The objective of this chapter is to briefly review the physics of T1ρ(rho) magnetic resonance (MR) imaging and to focus on potential applications in neuroradiology by reviewing recent published work at both 1.5 T and 3.0 T. Normative values for T1ρ have been quantified across adulthood demonstrating age dependence. A number of studies have explored its use in degenerative disc disease as an indirect marker of proteoglycan content within intervertebral discs on lumbar spine MR imaging. In brain MR imaging, there is ongoing research in the use of T1ρ in neurodegenerative disease, demyelinating disease, stroke, and neoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watts R, Andrews T, Hipko S, Gonyea JV, Filippi CG. In vivo whole-brain T1-rho mapping across adulthood: normative values and age dependence. J Magn Reson Imaging. 2015;40:376–82.

    Google Scholar 

  2. Li YT, Huang H, Zhuo Z, Lu PX, Chen W, Wáng YXJ. Bi-phase age-related brain gray matter magnetic resonance T1ρ relaxation time change in adults. Magn Reson Imaging. 2017;39:200–5.

    PubMed  Google Scholar 

  3. Gilani IA, Sepponen R. Quantitative rotating frame relaxometry methods in MRI. NMR Biomed. 2016;29(6):841–61.

    PubMed  Google Scholar 

  4. Wang YX, Zhang Q, Li X, Chen W, Ahuja A, Yuan J. T1ρ magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging. Quant Imaging Med Surg. 2015;5(6):858–85.

    PubMed  PubMed Central  Google Scholar 

  5. Menon R, Sharafi A, Windshuch J, Regatte RR. Bi-exponential 3D-T1rho mapping of whole brain at 3T. Sci Rep. 2018;8(1):1176.

    PubMed  PubMed Central  Google Scholar 

  6. Makela HI, Grohn OHJ, Kettunen MI, Kauppinen RA. Proton exchange as a relaxation mechanism for T1 in the rotating frame in native and immobilized protein solutions. Biochem Biophs Res Commun. 2001;289:813–8.

    CAS  Google Scholar 

  7. Magnotta VA, Heo HY, Dlouhy BJ, Dahdaleh NS, Follmer RL, Thedens DR, et al. Detecting activity-evoked pH changes in human brain. Proc Natl Acad Sci U S A. 2012;109:8270–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jin T, Autio J, Obata T, Kim SG. Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons. Magn Reson Med. 2011;65:1448–60.

    CAS  PubMed  Google Scholar 

  9. Tuite PJ, Mangia S, Tyan AE, Lee MK, Garwood M, Michaeli S. Magnetization transfer and adiabatic T1 rho MRI in the brainstem of Parkinson’s disease. Parkinsonism Relat Disord. 2012;18:623–5.

    PubMed  PubMed Central  Google Scholar 

  10. Borthakur A, Wheaton AJ, Gougoutas AJ, Akella SV, Regatte RR, Charagundla SR, et al. In vivo measurements of T1 rho dispersion in the human brain at 1.5 tesla. J Magn Reson Imaging. 2004;19:403–9.

    PubMed  Google Scholar 

  11. Borthakur A, Sochor M, Davatzikos C, Trojanowski JQ, Clark CM. T1rho MRI of Alzheimer’s disease. NeuroImage. 2008;41:1199–205.

    PubMed  Google Scholar 

  12. Haris M, Singh A, Cai K, Davatzikos C, Trojanowski JQ, Melhem ER, et al. T1 rho (T1ρ) MR imaging in Alzheimer’s disease and Parkinson’s disease with and without dementia. J Neurol. 2011;258:380–5.

    PubMed  Google Scholar 

  13. Witschey WR 2nd, Borthakur A, Elliott MA, Mellon E, Niyogi S, Wallman DJ, et al. Artifacts in T1 rho-weighted imaging: compensation for B(1) and B(0) field imperfections. J Magn Reson. 2007;186:75–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gonyea JV, Watts R, Applebee A, Andres T, Hipko S, Nickerson JP, Thornton L, Filippi CG. In vivo quantitative whole-brain T1 rho MRI of multiple sclerosis. J Magn Reson Imaging. 2015;42:1623–30.

    PubMed  Google Scholar 

  15. Mangia S, Carpenter AF, Tyan AE, Eberly LE, Garwood M, Michaeli S. Magnetization transfer and adiabatic T1rho MRI reveal abnormalities in normal-appearing white matter of subjects with multiple sclerosis. Mult Scler. 2014;20(8):1066–73.

    PubMed  Google Scholar 

  16. Lebel C, Gee M, Camicioli R, Weiler M, Martin W, Beaulieu C. Diffusion tensor imaging of white matter tract evolution over the lifespan. NeuroImage. 2012;60:340–52.

    CAS  PubMed  Google Scholar 

  17. Walhovd KB, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, et al. Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiol Aging. 2011;32:916–32.

    PubMed  Google Scholar 

  18. Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW. Mapping cortical change across the human life span. Nat Neurosci. 2003;6:1503–16.

    Google Scholar 

  19. Peelle JE, Cusack R, Henson RN. Adjusting for global effects in voxel-based morphometry: gray matter decline in normal aging. NeuroImage. 2012;60:1503–16.

    PubMed  Google Scholar 

  20. Taki Y, Thyreau B, Kinomura S, Sato K, Goto R, Wu K, et al. A longitudinal study of age- and gender-related annual rate of volume changes in regional gray matter in healthy adults. Hum Brain Mapp. 2013;34(9):2292–301.

    PubMed  Google Scholar 

  21. Borthakur A, Gur T, Wheaton AJ, Corbo M, Trojanowski JQ, Lee VM, et al. In vivo measurement of plaque burden in a mouse model of Alzheimer’s disease. J Magn Reson Imaging. 2006;24(5):1011–7.

    PubMed  PubMed Central  Google Scholar 

  22. Selkoe DJ. Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature. 1999;399:A23–31.

    CAS  PubMed  Google Scholar 

  23. Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci. 2001;24:1121–59.

    CAS  PubMed  Google Scholar 

  24. Haris M, McArdle E, Fenty M, Singh A, Davatzikos C, Trojanowski JQ, et al. Early marker for Alzheimer’s disease: hippocampus T1 rho estimation. J Magn Reson Imaging. 2009;29:1008–12.

    PubMed  PubMed Central  Google Scholar 

  25. Tam CW, Burton EJ, McKeith IG, Burn DJ, O’Brien JT. Temporal lobe atrophy on MRI in Parkinson disease with dementia: a comparison with Alzheimer disease and dementia with Lewy bodies. Neurology. 2005;64:861–5.

    CAS  PubMed  Google Scholar 

  26. Haris M, Yadav SK, Rizwan A, et al. T1rho MRI and CSF biomarkers in diagnosis of Alzheimer’s disease. Neuroimage Clin. 2015;7:598–604.

    PubMed  PubMed Central  Google Scholar 

  27. Richard E, Schmand BA, Eikelenboom P, Van Gool WA. Alzheimer’s Disease Neuroimaging Initiative: MRI and cerebrospinal fluid biomarkers for predicting progression to Alzheimer’s disease in patients with mild cognitive impairment: a diagnostic accuracy study. BMJ Open. 2013;6:e002541. https://doi.org/10.1136/bmjopen-2012-002541.

    Article  Google Scholar 

  28. Vermuri P, Wisthe HJ, Weigand SD, Knopman DS, Trojanowski JQ, Shaw LM, et al. Serial MRI and CSF biomarkers in normal aging, MCI, and AD. Neurology. 2010;75(2):143–51.

    Google Scholar 

  29. Lucchinetti CF, Popescu BF, Bunyan RF, Moll NM, Roemer SF, Lassmann H, et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med. 2011;365:2188–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Plumb J, McQuaid S, Mirahkhur M, Kirk J. Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol. 2002;12:154–69.

    PubMed  Google Scholar 

  31. Peruzzo D, Castellaro M, Calabrese M, Veronese E, Rinaldi F, Bernardi V, et al. Heterogeneity of cortical lesions in multiple sclerosis: an MRI perfusion study. J Cereb Blood Flow Metab. 2013;33(3):457–63.

    PubMed  Google Scholar 

  32. Wattjes M, Lutterbey G, Gieseke J, Träber F, Klotz L, Schmidt S, et al. Double inversion recovery brain imaging at 3T: diagnostic value in the detection of multiple sclerosis lesions. AJNR Am J Neuroradiol. 2007;28:54–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jokivarsi KT, Hiltunen Y, Gröhn H, Tuunanen P, Gröhn OH, Kauppinen RA. Estimation of the onset time of cerebral ischemia using T1ρ and T2 MRI in rats. Stroke. 2010;41:2335–40.

    PubMed  Google Scholar 

  34. Gröhn OHJ, Kettunen MI, Mäkelä HI, Penttonen M, Pitkänen A, Lukkarinen JA, et al. Early detection of irreversible cerebral ischemia in the rat using dispersion of the magnetic resonance imaging relaxation time, T1ρ. J Cereb Blood Flow Metab. 2000;20:1457–66.

    Google Scholar 

  35. Tan Y, Xu J, Chen R, Chen B, Xu J, Ren D, et al. Use of T1 relaxation time in rotating frame (T1ρ) and apparent diffusion coefficient to estimate cerebral stroke evolution. J Magn Reson Imaging. 2018;48:1247–54.

    PubMed  Google Scholar 

  36. Burdette JH, Ricci PE, Petitti N, Elster AD. Cerebral infarction: time course of signal intensity changes on diffusion-weighted images. AJR Am J Roentgen. 1998;171:791–5.

    CAS  Google Scholar 

  37. Hoehn-Berlage M, Eis M, Back T, Kohno K, Yamashita K. Changes of relaxation times (T1, T2) and apparent diffusion coefficient after permanent middle cerebral artery occlusion in the rat: temporal evolution, regional extent, and comparison with histology. Magn Reson Med. 1995;34:824–34.

    CAS  PubMed  Google Scholar 

  38. Kettunen MI, Gröhn OH, Silvennoinen MJ, Penttonen M, Kauppinen RA. Effects of intracellular pH, blood, and tissue oxygen on T1ρ relaxation in rat brain. Magn Reson Med. 2002;48:470–7.

    PubMed  Google Scholar 

  39. Symon L, Branston NM, Chikovani O. Ischemic brain edema following middle cerebral artery occlusion in baboons: relationship between regional cerebral water content and blood flow at 1 and 2 hr. Stroke. 1979;10:184–91.

    CAS  PubMed  Google Scholar 

  40. Kohno K, Hoehn-Berlage M, Mies G, Back T, Hossmann KA. Relationship between diffusion-weighted MR images, cerebral blood flow, and energy state in experimental brain infarction. Magn Reson Imaging. 1995;13:73–80.

    CAS  PubMed  Google Scholar 

  41. Jokivarsi KT, Niskanen JP, Michaeli S, Gröhn HI, Garwood M, Kauppinen RA, et al. Quantitative assessment of water pools by T1ρ and T2ρ MRI in acute cerebral ischemia of the rat. J Cereb Blood Flow Metab. 2009;29:206–16.

    CAS  PubMed  Google Scholar 

  42. Markkola AT, Aronen HJ, Paavonen T, Hopsu E, Sipilä LM, Tanttu JI, et al. Spin lock and magnetization transfer imaging of head and neck tumors. Radiology. 1996;200(2):369–75.

    CAS  PubMed  Google Scholar 

  43. Markkola AT, Aronen HJ, Paavonen T, Hopsu E, Sipilä LM, Tanttu JI, et al. T1 rho dispersion imaging of head and neck tumors: a comparison to spin lock and magnetization transfer techniques. J Magn Reson Imaging. 1997;7(5):873–9.

    CAS  PubMed  Google Scholar 

  44. Aronen HJ, Abo Ramadan U, Peltonen HK, Markkola AT, Tanttu JI, Jääskeläinen J, et al. 3D spin-lock imaging of human gliomas. Magn Reson Imaging. 1999;17(7):1001–10.

    CAS  PubMed  Google Scholar 

  45. Poptani H, Duvvuri U, Miller CG, Mancuso A, Charagundla S, Fraser NW, et al. T1ρ imaging of murine brain tumors at 4T. Acad Radiol. 2001;8(1):42–7.

    CAS  PubMed  Google Scholar 

  46. Hakumaki JM, Grohn OH, Tyynela K, Valonen P, Yla-Herrtuala S, Kauppinen RA. Early gene therapy-induced apoptotic response in BT4C gliomas by magnetic resonance relaxation contrast T1 in the rotating frame. Cancer Gene Ther. 2002;9(4):338–45.

    CAS  PubMed  Google Scholar 

  47. Villanueva-Meyer JE, Barajas RF Jr, Mabray MC, Chen W, Shankaranarayanan A, Koon P, et al. Differentiation of brain tumor-related edema based on 3D T1 rho imaging. Eur J Radiol. 2017;91:88–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang X, Lin Y, Gillies RJ. Tumor pH and its measurement. J Nucl Med. 2010;51(8):1167–70.

    CAS  PubMed  Google Scholar 

  49. Martinez GV, Zhang X, García-Martín ML, Morse DL, Woods M, Sherry AD, et al. Imaging the extracellular pH of tumors by MRI after injection of a single cocktail of T1 and T2 contrast agents. NMR Biomed. 2011;24(10):1380–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ali SO, Fessas P, Kaggie JD, Zaccagna F, Houston G, Reid S, et al. Evaluation of the sensitivity of R1ρ MRI to pH and macromolecular density. Magn Reson Imaging. 2019;58:156–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cheung KMC, Karpinnen J, Chan D, Ho DW, Song YQ, Sham P, et al. Prevalence and pattern of lumbar magnetic resonance changes in a population study of one thousand forty-three individuals. Spine. 2009;34:934–40.

    PubMed  Google Scholar 

  52. An HS, Anderson PA, Haughton VM, Iatridis JC, Kang JD, Lotz JC, et al. Introduction: disc degeneration-summary. Spine. 2004;29:2677–8.

    PubMed  Google Scholar 

  53. Luoma K, Riihimaki H, Luukkonen R, Rainiko R, Viikari-Juntura E, Lamminen A. Low back pain in relation to lumbar disc degeneration. Spine. 2000;25:487–92.

    CAS  PubMed  Google Scholar 

  54. Peterson CK, Bolton JE, Wood AR. A cross-sectional study correlating lumbar spine degeneration with disability and pain. Spine. 2000;25:218–23.

    CAS  PubMed  Google Scholar 

  55. Raj PP. Intervertebral disc: anatomy, physiology, pathophysiology, treatment. Pain Pract. 2008;8:18–44.

    PubMed  Google Scholar 

  56. Blumenkrantz G, Zuo J, Li X, Kornak J, Link TM, Majumdar S. In vivo 3.0- tesla magnetic T1ρ and T2 relaxation mapping in subjects with intervertebral disc degeneration and clinical symptoms. Magn Reson Med. 2010;63:1193–200.

    PubMed  PubMed Central  Google Scholar 

  57. Wang C, Witchey W, Elliott MA, Borthakur A, Reddy R. Measurement of intervertebral disc pressure with T1ρ MRI. Magn Reson Med. 2010;64(6):1721–7.

    PubMed  PubMed Central  Google Scholar 

  58. Taylor TK, Melrose J, Burkhardt D, Ghosh P, Claes LE, Kettler A, et al. Spinal biomechanics and aging are major determinants of the proteoglycan metabolism of intervertebral disc cells. Spine. 2000;25:3014–20.

    CAS  PubMed  Google Scholar 

  59. Iatridis JC, MacLean JJ, O’Brien M, Stokes IAF. Measurements of proteoglycan and water content distribution in human lumbar intervertebral discs. Spine. 2007;32:1493–7.

    PubMed  PubMed Central  Google Scholar 

  60. Luoma K, Vehmas T, Riihimäki H, Raininko R. Disc height and signal intensity of the nucleus pulposus on magnetic resonance imaging as indicators of lumbar disc degeneration. Spine. 2001;26:680–6.

    CAS  PubMed  Google Scholar 

  61. Antoniou J, Pike GB, Steffen T, Baramki H, Poole AR, Aebi M, et al. Quantitative magnetic resonance imaging in the assessment of degenerative disc disease. Magn Reson Med. 1998;40:900–7.

    CAS  PubMed  Google Scholar 

  62. Kettler A, Wilke HJ. Review of existing grading systems for cervical or lumbar disc and facet degeneration. Eur Spine J. 2006;15:705–18.

    PubMed  Google Scholar 

  63. Tertti M, Paajanen H, Laato M, Aho H, Komu M, Kormano M. Disc degeneration in magnetic resonance imaging: a comparative biochemical, histologic, and radiologic study in cadaver spines. Spine. 1991;16:629–34.

    CAS  PubMed  Google Scholar 

  64. Nguyen AM, Johannessen W, Yoder JH, Wheaton AJ, Vresilovic EJ, Borthakur A, et al. Noninvasive quantification of human nucleus pulposus pressure with the use of T1ρ-weighted magnetic resonance imaging. J Bone Joint Surg Am. 2008;90:796–802.

    PubMed  PubMed Central  Google Scholar 

  65. Johannessen W, Auerbach JD, Wheaton AJ, Kurji A, Borthakur A, Reddy R, et al. Assessment of human disc degeneration and proteoglycan content using T1ρ-weighted magnetic resonance imaging. Spine. 2006;15(11):1253–7.

    Google Scholar 

  66. Mulligan KR, Ferland CE, Gawri R, Borthakur A, Haglund L, Ouellet J. Axial T1ρ MRI as a diagnostic imaging modality to quantify proteoglycan concentration in degenerative disc disease. Eur Spine J. 2015;24(11):2395–401.

    PubMed  Google Scholar 

  67. Auerbach JD, Johannessen W, et al. In vivo quantification of human lumbar disc degeneration using T1ρ-weighted magnetic resonance imaging. Eur Spine J. 2006;3(Suppl 3):S338–44.

    Google Scholar 

  68. Zhou Z, Jiang B, Zhou Z, Pan X, Sun H, Huang B, et al. Intervertebral disk degeneration: T1ρ MR imaging of human and animal models. Radiology. 2013;268(2):492–500.

    PubMed  Google Scholar 

  69. Filippi CG, Duncan CT, Watts R, Nickerson JP, Gonyea JV, Hipko SG, et al. In vivo quantification of T1ρ in lumbar spine disk spaces at 3T using parallel transmission MRI. AJR Am J Roentgen. 2013;201(1):W110–6.

    Google Scholar 

  70. Andrews T, Watts R, Hipko S, Gonyea J, Filippi CG. Assessment of T1ρ mapping of thoracolumbar discs at 3T with and without RF shimming. In: proceedings of the 20th annual meeting of ISMRM, Melbourne, Australia. 2012: 1401.

    Google Scholar 

  71. Zuo J, Joseph GB, Li X, Link TM, Hu SS, Berven SH, et al. In-vivo intervertebral disc characterization using magnetic resonance spectroscopy and T1ρ imaging: association with discography and Oswestry disability index and SF-36. Spine. 2012;37(3):214–21.

    PubMed  PubMed Central  Google Scholar 

  72. Wang YX, Zhao F, Yuan J, Mok GS, Ahuja AT, Griffith JF. Accelerated T1ρ relaxation quantification in intervertebral disc using limited spin-lock times. Quant Imaging Med Surg. 2013;3(1):54–8.

    PubMed  PubMed Central  Google Scholar 

  73. Yoon MA, Hong SJ, Kang CH, Ahn KS, Kim BH. T1ρ and T2 mapping of lumbar intervertebral disc: correlation with degeneration and morphologic changes in different disc regions. Magn Reson Imaging. 2016;34(7):932–9.

    PubMed  Google Scholar 

  74. Masuda K, Oegema TR Jr, An HS. Growth factors and treatment of intervertebral disc degeneration. Spine. 2004;29:2757–69.

    PubMed  Google Scholar 

  75. Shimer AL, Chadderdon RC, Glibertson LG, Kang JD. Gene therapy approaches for intervertebral disc degeneration. Spine. 2004;29:2770–8.

    PubMed  Google Scholar 

  76. Guyer RD, Ohnmeiss DD. Intervertebral disc prostheses. Spine. 2003;28(suppl):S15–23.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filippi, C.G., Klebba, A., Hipko, S., Watts, R. (2023). Quantitative T1ρ MR Imaging in Neuroradiology. In: Faro, S.H., Mohamed, F.B. (eds) Functional Neuroradiology. Springer, Cham. https://doi.org/10.1007/978-3-031-10909-6_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10909-6_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10908-9

  • Online ISBN: 978-3-031-10909-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics