Skip to main content

fMRI of the Central Auditory System

  • Chapter
  • First Online:
Functional Neuroradiology

Abstract

Challenges for auditory fMRI include the intense scanner acoustic sound and the effects of the magnetic field on sound delivery equipment and on the electronic hearing devices critical to the study of individuals with hearing impairment. Despite these difficulties, a body of neuroimaging studies in humans provides evidence for plasticity in the central auditory system and is therefore informative in the clinical context. This chapter presents several clinical applications of fMRI that investigate the processing of nonlinguistic and linguistic sound features. These include studies of the functional reorganization of the central auditory system as a consequence of adaptation to hearing loss and its remediation through amplification and the assessment of candidature for cochlear implantation. While the chapter illustrates opportunities for auditory fMRI to supplement the clinical decision-making process, it also highlights specific areas where there is a current lack of understanding and makes recommendations for future clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guimaraes AR, Melcher JR, Talavage TM, Baker JR, Ledden P, Rosen BR, et al. Imaging subcortical auditory activity in humans. Hum Brain Mapp. 1998;6(1):33–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Melcher JR, Sigalovsky IS, Guinan JJ Jr, Levine RA. Lateralized tinnitus studied with functional magnetic resonance imaging: abnormal inferior colliculus activation. J Neurophysiol. 2000;83(2):1058–72.

    CAS  PubMed  Google Scholar 

  3. Hofmeier B, Wolpert S, Aldamer ES, Walter M, Thiericke J, Braun C, et al. Reduced sound-evoked and resting-state BOLD fMRI connectivity in tinnitus. NeuroImage Clin. 2018;20:637–49.

    PubMed  PubMed Central  Google Scholar 

  4. Griffiths TD, Uppenkamp S, Johnsrude I, Josephs O, Patterson RD. Encoding of the temporal regularity of sound in the human brainstem. Nat Neurosci. 2001;4(6):633–7.

    CAS  PubMed  Google Scholar 

  5. Chandrasekaran B, Kraus N, Wong PC. Human inferior colliculus activity relates to individual differences in spoken language learning. J Neurophysiol. 2012;107(5):1325–36.

    PubMed  Google Scholar 

  6. Kaas JH, Hackett TA. Subdivisions of auditory cortex and levels of processing in primates. Audiol Neurootol. 1998;3(2–3):73–85.

    CAS  PubMed  Google Scholar 

  7. Kaas JH, Hackett TA. Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci U S A. 2000;97(22):11793–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Galaburda A, Sanides F. Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol. 1980;190(3):597–610.

    CAS  PubMed  Google Scholar 

  9. Rivier F, Clarke S. Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. Neuroimage. 1997;6(4):288–304.

    CAS  PubMed  Google Scholar 

  10. Wallace MN, Johnston PW, Palmer AR. Histochemical identification of cortical areas in the auditory region of the human brain. Exp Brain Res. 2002;143(4):499–508.

    CAS  PubMed  Google Scholar 

  11. Rauschecker JP, Tian B, Hauser M. Processing of complex sounds in the macaque nonprimary auditory cortex. Science. 1995;268(5207):111–4.

    CAS  PubMed  Google Scholar 

  12. Rauschecker JP, Tian B, Pons T, Mishkin M. Serial and parallel processing in rhesus monkey auditory cortex. J Comp Neurol. 1997;382(1):89–103.

    CAS  PubMed  Google Scholar 

  13. Merzenich MM, Brugge JF. Representation of the cochlear partition of the superior temporal plane of the macaque monkey. Brain Res. 1973;50(2):275–96.

    CAS  PubMed  Google Scholar 

  14. Morel A, Garraghty PE, Kaas JH. Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J Comp Neurol. 1993;335(3):437–59.

    CAS  PubMed  Google Scholar 

  15. Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K. Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage. 2001;13(4):684–701.

    CAS  PubMed  Google Scholar 

  16. Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, Goebel R. Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron. 2003;40(4):859–69.

    CAS  PubMed  Google Scholar 

  17. Talavage TM, Sereno MI, Melcher JR, Ledden PJ, Rosen BR, Dale AM. Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J Neurophysiol. 2004;91(3):1282–96.

    PubMed  Google Scholar 

  18. Paltoglou AE, Sumner CJ, Hall DA. Examining the role of frequency specificity in the enhancement and suppression of human cortical activity by auditory selective attention. Hear Res. 2009;257(1–2):106–18.

    PubMed  Google Scholar 

  19. Da Costa S, van der Zwaag W, Marques JP, Frackowiak RS, Clarke S, Saenz M. Human primary auditory cortex follows the shape of Heschl’s gyrus. J Neurosci. 2011;31(40):14067–75.

    PubMed  PubMed Central  Google Scholar 

  20. Langers DR, van Dijk P. Mapping the tonotopic organization in human auditory cortex with minimally salient acoustic stimulation. Cereb Cortex. 2012;22(9):2024–38.

    PubMed  Google Scholar 

  21. Langers DR. Assessment of tonotopically organised subdivisions in human auditory cortex using volumetric and surface-based cortical alignments. Hum Brain Mapp. 2014;35(4):1544–61.

    PubMed  Google Scholar 

  22. Da Costa S, Saenz M, Clarke S, van der Zwaag W. Tonotopic gradients in human primary auditory cortex: concurring evidence from high-resolution 7 T and 3 T fMRI. Brain Topogr. 2015;28(1):66–9.

    PubMed  Google Scholar 

  23. Recanzone GH. Spatial processing in the auditory cortex of the macaque monkey. Proc Natl Acad Sci U S A. 2000;97(22):11829–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rauschecker JP, Tian B. Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci U S A. 2000;97(22):11800–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tian B, Reser D, Durham A, Kustov A, Rauschecker JP. Functional specialization in rhesus monkey auditory cortex. Science. 2001;292(5515):290–3.

    CAS  PubMed  Google Scholar 

  26. Petkov CI, Kayser C, Augath M, Logothetis NK. Functional imaging reveals numerous fields in the monkey auditory cortex. PLoS Biol. 2006;4(7):e215.

    PubMed  PubMed Central  Google Scholar 

  27. Langers DR, Backes WH, van Dijk P. Representation of lateralization and tonotopy in primary versus secondary human auditory cortex. Neuroimage. 2007;34(1):264–73.

    PubMed  Google Scholar 

  28. Morosan P, Schleicher A, Amunts K, Zilles K. Multimodal architectonic mapping of human superior temporal gyrus. Anat Embryol. 2005;210(5–6):401–6.

    CAS  Google Scholar 

  29. Obler R, Kostler H, Weber BP, Mack KF, Becker H. Safe electrical stimulation of the cochlear nerve at the promontory during functional magnetic resonance imaging. Magn Reson Med. 1999;42(2):371–8.

    CAS  PubMed  Google Scholar 

  30. Heller JW, Brackmann DE, Tucci DL, Nyenhuis JA, Chou CK. Evaluation of MRI compatibility of the modified nucleus multichannel auditory brainstem and cochlear implants. Am J Otol. 1996;17(5):724–9.

    CAS  PubMed  Google Scholar 

  31. Weber BP, Neuburger J, Battmer RD, Lenarz T. Magnetless cochlear implant: relevance of adult experience for children. Am J Otol. 1997;18(6 Suppl):S50–1.

    CAS  PubMed  Google Scholar 

  32. Chou CK, McDougall JA, Can KW. Absence of radiofrequency heating from auditory implants during magnetic resonance imaging. Bioelectromagnetics. 1995;16(5):307–16.

    CAS  PubMed  Google Scholar 

  33. Shellock FG, Morisoli S, Kanal E. MR procedures and biomedical implants, materials, and devices: 1993 update. Radiology. 1993;189(2):587–99.

    CAS  PubMed  Google Scholar 

  34. Foster JR, Hall DA, Summerfield AQ, Palmer AR, Bowtell RW. Sound-level measurements and calculations of safe noise dosage during EPI at 3 T. J Magn Reson Imaging. 2000;12(1):157–63.

    CAS  PubMed  Google Scholar 

  35. Harms MP, Melcher JR. Sound repetition rate in the human auditory pathway: representations in the waveshape and amplitude of fMRI activation. J Neurophysiol. 2002;88(3):1433–50.

    PubMed  Google Scholar 

  36. Bandettini PA, Jesmanowicz A, Van Kylen J, Birn RM, Hyde JS. Functional MRI of brain activation induced by scanner acoustic noise. Magn Reson Med. 1998;39(3):410–6.

    CAS  PubMed  Google Scholar 

  37. Talavage TM, Edmister WB, Ledden PJ, Weisskoff RM. Quantitative assessment of auditory cortex responses induced by imager acoustic noise. Hum Brain Mapp. 1999;7(2):79–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hall DA, Chambers J, Akeroyd MA, Foster JR, Coxon R, Palmer AR. Acoustic, psychophysical, and neuroimaging measurements of the effectiveness of active cancellation during auditory functional magnetic resonance imaging. J Acoust Soc Am. 2009;125(1):347–59.

    PubMed  Google Scholar 

  39. Edmister WB, Talavage TM, Ledden PJ, Weisskoff RM. Improved auditory cortex imaging using clustered volume acquisitions. Hum Brain Mapp. 1999;7(2):89–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Talavage TM, Edmister WB. Nonlinearity of FMRI responses in human auditory cortex. Hum Brain Mapp. 2004;22(3):216–28.

    PubMed  PubMed Central  Google Scholar 

  41. Ravicz ME, Melcher JR, Kiang NY. Acoustic noise during functional magnetic resonance imaging. J Acoust Soc Am. 2000;108(4):1683–96.

    CAS  PubMed  Google Scholar 

  42. Ravicz ME, Melcher JR. Isolating the auditory system from acoustic noise during functional magnetic resonance imaging: examination of noise conduction through the ear canal, head, and body. J Acoust Soc Am. 2001;109(1):216–31.

    CAS  PubMed  Google Scholar 

  43. Chambers J, Akeroyd MA, Summerfield AQ, Palmer AR. Active control of the volume acquisition noise in functional magnetic resonance imaging: method and psychoacoustical evaluation. J Acoust Soc Am. 2001;110(6):3041–54.

    CAS  PubMed  Google Scholar 

  44. Blackman GA, Hall DA. Reducing the effects of background noise during auditory functional magnetic resonance imaging of speech processing: qualitative and quantitative comparisons between two image acquisition schemes and noise cancellation. J Speech Lang Hear Res. 2011;54(2):693–704.

    PubMed  Google Scholar 

  45. Mansfield P, Chapman BL, Bowtell R, Glover P, Coxon R, Harvey PR. Active acoustic screening: reduction of noise in gradient coils by Lorentz force balancing. Magn Reson Med. 1995;33(2):276–81.

    CAS  PubMed  Google Scholar 

  46. Bowtell RW, Mansfield P. Quiet transverse gradient coils: Lorentz force balanced designs using geometrical similitude. Magn Reson Med. 1995;34(3):494–7.

    CAS  PubMed  Google Scholar 

  47. Hedeen RA, Edelstein WA. Characterization and prediction of gradient acoustic noise in MR imagers. Magn Reson Med. 1997;37(1):7–10.

    CAS  PubMed  Google Scholar 

  48. Hennel F, Girard F, Loenneker T. “Silent” MRI with soft gradient pulses. Magn Reson Med. 1999;42(1):6–10.

    CAS  PubMed  Google Scholar 

  49. Schmitter S, Diesch E, Amann M, Kroll A, Moayer M, Schad LR. Silent echo-planar imaging for auditory FMRI. MAGMA. 2008;21(5):317–25.

    CAS  PubMed  Google Scholar 

  50. Zong X, Lee J, John Poplawsky A, Kim SG, Ye JC. Compressed sensing fMRI using gradient-recalled echo and EPI sequences. Neuroimage. 2014;92:312–21.

    PubMed  Google Scholar 

  51. Fang Z, Van Le N, Choy M, Lee JH. High spatial resolution compressed sensing (HSPARSE) functional MRI. Magn Reson Med. 2016;76(2):440–55.

    PubMed  Google Scholar 

  52. Hall DA, Summerfield AQ, Goncalves MS, Foster JR, Palmer AR, Bowtell RW. Time-course of the auditory BOLD response to scanner noise. Magn Reson Med. 2000;43(4):601–6.

    CAS  PubMed  Google Scholar 

  53. Tamer GG Jr, Luh WM, Talavage TM. Characterizing response to elemental unit of acoustic imaging noise: an FMRI study. IEEE Trans Biomed Eng. 2009;56(7):1919–28.

    PubMed  PubMed Central  Google Scholar 

  54. Hall DA, Haggard MP, Akeroyd MA, Palmer AR, Summerfield AQ, Elliott MR, et al. “Sparse” temporal sampling in auditory fMRI. Hum Brain Mapp. 1999;7(3):213–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Olulade O, Hu S, Gonzalez-Castillo J, Tamer GG Jr, Luh WM, Ulmer JL, et al. Assessment of temporal state-dependent interactions between auditory fMRI responses to desired and undesired acoustic sources. Hear Res. 2011;277(1–2):67–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ranaweera RD, Kwon M, Hu S, Tamer GG Jr, Luh WM, Talavage TM. Temporal pattern of acoustic imaging noise asymmetrically modulates activation in the auditory cortex. Hear Res. 2016;331(1):57–68.

    PubMed  Google Scholar 

  57. Schmithorst VJ, Holland SK. Event-related fMRI technique for auditory processing with hemodynamics unrelated to acoustic gradient noise. Magn Reson Med. 2004;51(2):399–402.

    PubMed  Google Scholar 

  58. Schwarzbauer C, Davis MH, Rodd JM, Johnsrude I. Interleaved silent steady state (ISSS) imaging: a new sparse imaging method applied to auditory fMRI. Neuroimage. 2006;29(3):774–82.

    PubMed  Google Scholar 

  59. Perrachione TK, Ghosh SS. Optimized design and analysis of sparse-sampling FMRI experiments. Front Neurosci. 2013;7:55.

    PubMed  PubMed Central  Google Scholar 

  60. Neuman AC. Central auditory system plasticity and aural rehabilitation of adults. J Rehabil Res Dev. 2005;42(4 Suppl 2):169–86.

    PubMed  Google Scholar 

  61. Scheffler K, Bilecen D, Schmid N, Tschopp K, Seelig J. Auditory cortical responses in hearing subjects and unilateral deaf patients as detected by functional magnetic resonance imaging. Cereb Cortex. 1998;8(2):156–63.

    CAS  PubMed  Google Scholar 

  62. Langers DR, van Dijk P, Backes WH. Lateralization, connectivity and plasticity in the human central auditory system. Neuroimage. 2005;28(2):490–9.

    PubMed  Google Scholar 

  63. Jancke L, Gaab N, Wustenberg T, Scheich H, Heinze HJ. Short-term functional plasticity in the human auditory cortex: an fMRI study. Brain Res Cogn Brain Res. 2001;12(3):479–85.

    CAS  PubMed  Google Scholar 

  64. Bilecen D, Seifritz E, Radu EW, Schmid N, Wetzel S, Probst R, et al. Cortical reorganization after acute unilateral hearing loss traced by fMRI. Neurology. 2000;54(3):765–7.

    CAS  PubMed  Google Scholar 

  65. Xu H, Fan W, Zhao X, Li J, Zhang W, Lei P, et al. Disrupted functional brain connectome in unilateral sudden sensorineural hearing loss. Hear Res. 2016;335:138–48.

    PubMed  Google Scholar 

  66. Zhang Y, Mao Z, Feng S, Liu X, Lan L, Zhang J, et al. Altered functional networks in long-term unilateral hearing loss: a connectome analysis. Brain Behav. 2018;8(2):e00912.

    PubMed  PubMed Central  Google Scholar 

  67. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186–98.

    CAS  PubMed  Google Scholar 

  68. Ghazaleh N, Zwaag WV, Clarke S, Ville DV, Maire R, Saenz M. High-resolution fMRI of auditory cortical map changes in unilateral hearing loss and tinnitus. Brain Topogr. 2017;30(5):685–97.

    PubMed  Google Scholar 

  69. Langers DR, de Kleine E, van Dijk P. Tinnitus does not require macroscopic tonotopic map reorganization. Front Syst Neurosci. 2012;6:2.

    PubMed  PubMed Central  Google Scholar 

  70. Neuman AC. Late-onset auditory deprivation: a review of past research and an assessment of future research needs. Ear Hear. 1996;17(3 Suppl):3S–13S.

    CAS  PubMed  Google Scholar 

  71. Silverman CA, Emmer MB. Auditory deprivation and recovery in adults with asymmetric sensorineural hearing impairment. J Am Acad Audiol. 1993;4(5):338–46.

    CAS  PubMed  Google Scholar 

  72. Habicht J, Behler O, Kollmeier B, Neher T. Exploring differences in speech processing among older hearing-impaired listeners with or without hearing aid experience: eye-tracking and fMRI measurements. Front Neurosci. 2019;13:420.

    PubMed  PubMed Central  Google Scholar 

  73. Hwang JH, Wu CW, Chen JH, Liu TC. Changes in activation of the auditory cortex following long-term amplification: an fMRI study. Acta Otolaryngol. 2006;126(12):1275–80.

    PubMed  Google Scholar 

  74. Suzuki M, Kouzaki H, Nishida Y, Shiino A, Ito R, Kitano H. Cortical representation of hearing restoration in patients with sudden deafness. Neuroreport. 2002;13(14):1829–32.

    PubMed  Google Scholar 

  75. Erb J, Obleser J. Upregulation of cognitive control networks in older adults’ speech comprehension. Front Syst Neurosci. 2013;7:116.

    PubMed  PubMed Central  Google Scholar 

  76. Peelle JE, Wingfield A. The neural consequences of age-related hearing loss. Trends Neurosci. 2016;39(7):486–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gonzalez-Castillo J, Talavage TM. Reproducibility of fMRI activations associated with auditory sentence comprehension. Neuroimage. 2011;54(3):2138–55.

    PubMed  Google Scholar 

  78. Wong D, Miyamoto RT, Pisoni DB, Sehgal M, Hutchins GD. PET imaging of cochlear-implant and normal-hearing subjects listening to speech and nonspeech. Hear Res. 1999;132(1–2):34–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Strelnikov K, Marx M, Lagleyre S, Fraysse B, Deguine O, Barone P. PET-imaging of brain plasticity after cochlear implantation. Hear Res. 2015;322:180–7.

    CAS  PubMed  Google Scholar 

  80. Sevy AB, Bortfeld H, Huppert TJ, Beauchamp MS, Tonini RE, Oghalai JS. Neuroimaging with near-infrared spectroscopy demonstrates speech-evoked activity in the auditory cortex of deaf children following cochlear implantation. Hear Res. 2010;270(1–2):39–47.

    PubMed  PubMed Central  Google Scholar 

  81. Saliba J, Bortfeld H, Levitin DJ, Oghalai JS. Functional near-infrared spectroscopy for neuroimaging in cochlear implant recipients. Hear Res. 2016;338:64–75.

    PubMed  PubMed Central  Google Scholar 

  82. Hofmann E, Preibisch C, Knaus C, Muller J, Kremser C, Teissl C. Noninvasive direct stimulation of the cochlear nerve for functional MR imaging of the auditory cortex. AJNR Am J Neuroradiol. 1999;20(10):1970–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Neumann K, Preibisch C, Spreer J, Raab P, Hamm J, Euler HA, et al. Testing the diagnostic value of electrical ear canal stimulation in cochlear implant candidates by functional magnetic resonance imaging. Audiol Neurootol. 2008;13(5):281–92.

    PubMed  Google Scholar 

  84. Alwatban AZ, Ludman CN, Mason SM, O'Donoghue GM, Peters AM, Morris PG. A method for the direct electrical stimulation of the auditory system in deaf subjects: a functional magnetic resonance imaging study. J Magn Reson Imaging. 2002;16(1):6–12.

    PubMed  Google Scholar 

  85. Schmidt AM, Weber BP, Becker H. Functional magnetic resonance imaging of the auditory cortex as a diagnostic tool in cochlear implant candidates. Neuroimaging Clin N Am. 2001;11(2):297–304. ix

    CAS  PubMed  Google Scholar 

  86. Schmidt AM, Weber BP, Vahid M, Zacharias R, Neuburger J, Witt M, et al. Functional MR imaging of the auditory cortex with electrical stimulation of the promontory in 35 deaf patients before cochlea implantation. AJNR Am J Neuroradiol. 2003;24(2):201–7.

    PubMed  PubMed Central  Google Scholar 

  87. Berthezene Y, Truy E, Morgon A, Giard MH, Hermier M, Franconi JM, et al. Auditory cortex activation in deaf subjects during cochlear electrical stimulation. Evaluation by functional magnetic resonance imaging. Invest Radiol. 1997;32(5):297–301.

    CAS  PubMed  Google Scholar 

  88. Giraud AL, Truy E. The contribution of visual areas to speech comprehension: a PET study in cochlear implants patients and normal-hearing subjects. Neuropsychologia. 2002;40(9):1562–9.

    PubMed  Google Scholar 

  89. Lee HJ, Giraud AL, Kang E, Oh SH, Kang H, Kim CS, et al. Cortical activity at rest predicts cochlear implantation outcome. Cereb Cortex. 2007;17(4):909–17.

    PubMed  Google Scholar 

  90. Giraud AL, Lee HJ. Predicting cochlear implant outcome from brain organisation in the deaf. Restor Neurol Neurosci. 2007;25(3–4):381–90.

    PubMed  Google Scholar 

  91. Rouger J, Lagleyre S, Fraysse B, Deneve S, Deguine O, Barone P. Evidence that cochlear-implanted deaf patients are better multisensory integrators. Proc Natl Acad Sci U S A. 2007;104(17):7295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lazard DS, Lee HJ, Gaebler M, Kell CA, Truy E, Giraud AL. Phonological processing in post-lingual deafness and cochlear implant outcome. Neuroimage. 2010;49(4):3443–51.

    CAS  PubMed  Google Scholar 

  93. Scott SK, Johnsrude IS. The neuroanatomical and functional organization of speech perception. Trends Neurosci. 2003;26(2):100–7.

    CAS  PubMed  Google Scholar 

  94. Lazard DS, Giraud AL. Faster phonological processing and right occipito-temporal coupling in deaf adults signal poor cochlear implant outcome. Nat Commun. 2017;8:14872.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Deshpande AK, Tan L, Lu LJ, Altaye M, Holland SK. fMRI as a preimplant objective tool to predict postimplant oral language outcomes in children with Cochlear implants. Ear Hear. 2016;37(4):e263–72.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Talavage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hall, D.A., Talavage, T.M. (2023). fMRI of the Central Auditory System. In: Faro, S.H., Mohamed, F.B. (eds) Functional Neuroradiology. Springer, Cham. https://doi.org/10.1007/978-3-031-10909-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10909-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10908-9

  • Online ISBN: 978-3-031-10909-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics