Skip to main content

Deep Digging of Anomalous Transactions in Financial Networks with Imbalanced Data

  • Chapter
  • First Online:
Deep Learning for Social Media Data Analytics

Part of the book series: Studies in Big Data ((SBD,volume 113))

  • 826 Accesses

Abstract

Anomaly (user or transaction) detection is a major concern and has intrigued a wide spectrum of disciplines, for example, finance, security, etc. Anomalous instances in a dataset are very rare in general, which leads to imbalanced distribution of classes in the dataset, and poses a great challenge to anomaly detection. In the case of credit card transactions, it is of utmost importance to identify fraudulent transactions in order to save financial organizations from giving credit to users that are not likely to be repaid in the future. Most of the prevailing techniques to address the class imbalance problem aim to balance the dataset by either producing synthetic data samples of a minority class or eliminating some samples of the majority class. In this chapter, we provide a brief overview of the challenges faced due to class imbalance while learning deep learning-based prediction models and discuss the sampling strategies that deal with the class imbalance data problem, for example, oversampling, SMOTE, and its variants, and data ensembles. Data ensembles divide the dataset into small subsets that are in itself balanced. Then, corresponding to each balanced sub-dataset, a classifier is trained, and voting is used for the first level of prediction. As deep learning approaches have the ability to map complex non-linear relations within high-dimensional data, they can be leveraged to anomaly detection problems. To improve the classification task’s performance and avoid overfitting, Deep Multilayer Perceptron (DMLP) and Deep Convolutional Neural Network (DCNN) are trained for each balanced sub-dataset, and second level voting is performed. Also, a detailed numerical analysis of the proposed architecture is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.kaggle.com/mlg-ulb/creditcardfraud.

References

  1. Ahmed, M., Mahmood, A.N., Islam, M.R.: A survey of anomaly detection techniques in financial domain. Futur. Gener. Comput. Syst. 55, 278–288 (2016)

    Article  Google Scholar 

  2. Ahsan, M.M., Mahmud, M., Saha, P.K., Gupta, K.D., Siddique, Z.: Effect of data scaling methods on machine learning algorithms and model performance. Technologies 9(3), 52 (2021)

    Article  Google Scholar 

  3. Akoglu, L., McGlohon, M., Faloutsos, C.: Oddball: spotting anomalies in weighted graphs. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 410–421. Springer, Berlin (2010)

    Google Scholar 

  4. Ali, A., Shamsuddin, S.M., Ralescu, A.: Classification with class imbalance problem: a review 7, 176–204 (2015)

    Google Scholar 

  5. Bagga, S., Goyal, A., Gupta, N., Goyal, A.: Credit card fraud detection using pipeling and ensemble learning. Procedia Comput. Sci. 173, 104–112 (2020)

    Article  Google Scholar 

  6. Barandela, R., Valdovinos, R.M., Sánchez, J.S., Ferri, F.J.: The imbalanced training sample problem: Under or over sampling? In: Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), pp. 806–814. Springer (2004)

    Google Scholar 

  7. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach. Learn. 36(1), 105–139 (1999)

    Article  Google Scholar 

  8. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)

    Google Scholar 

  9. Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: a survey (2019). arXiv:1901.03407

  10. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1–58 (2009)

    Article  Google Scholar 

  11. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  12. Chawla, N.V., Japkowicz, N., Kotcz, A.: Special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsl 6(1), 1–6 (2004)

    Article  Google Scholar 

  13. Chen, J., Shen, Y., Ali, R.: Credit card fraud detection using sparse autoencoder and generative adversarial network. In: 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 1054–1059. IEEE (2018)

    Google Scholar 

  14. Chen, Z., Hendrix, W., Samatova, N.F.: Community-based anomaly detection in evolutionary networks. J. Intell. Inf. Syst. 39(1), 59–85 (2012)

    Article  Google Scholar 

  15. Choirunnisa, S., Buliali, J.: Hybrid method of undersampling and oversampling for handling imbalanced data (2018). https://doi.org/10.1109/ISRITI.2018.8864335

  16. Du, H., Zhang, Y., Gang, K., Zhang, L., Chen, Y.C.: Online ensemble learning algorithm for imbalanced data stream. Appl. Soft Comput. 107, 107378 (2021)

    Article  Google Scholar 

  17. Eberle, W., Holder, L.: Anomaly detection in data represented as graphs. Intell. Data Anal. 11(6), 663–689 (2007)

    Article  Google Scholar 

  18. Estabrooks, A., Jo, T., Japkowicz, N.: A multiple resampling method for learning from imbalanced data sets. Comput. Intell. 20(1), 18–36 (2004)

    Article  MathSciNet  Google Scholar 

  19. Fiore, U., De Santis, A., Perla, F., Zanetti, P., Palmieri, F.: Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Inf. Sci. 479, 448–455 (2019)

    Article  Google Scholar 

  20. Forough, J., Momtazi, S.: Ensemble of deep sequential models for credit card fraud detection. Appl. Soft Comput. 99, 106883 (2021)

    Article  Google Scholar 

  21. Fu, K., Cheng, D., Tu, Y., Zhang, L.: Credit card fraud detection using convolutional neural networks. In: International Conference on Neural Information Processing, pp. 483–490. Springer (2016)

    Google Scholar 

  22. Gaikwad, J.R., Deshmane, A.B., Somavanshi, H.V., Patil, S.V., Badgujar, R.A.: Credit card fraud detection using decision tree induction algorithm. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 4(6) (2014)

    Google Scholar 

  23. Gangwar, A.K., Ravi, V.: Wip: generative adversarial network for oversampling data in credit card fraud detection. In: International Conference on Information Systems Security, pp. 123–134. Springer (2019)

    Google Scholar 

  24. Ganji, V.R., Mannem, S.N.P.: Credit card fraud detection using anti-k nearest neighbor algorithm. Int. J. Comput. Sci. Eng. 4(6), 1035–1039 (2012)

    Google Scholar 

  25. Gao, J., Du, N., Fan, W., Turaga, D., Parthasarathy, S., Han, J.: A multi-graph spectral framework for mining multi-source anomalies. In: Graph Embedding for Pattern Analysis, pp. 205–227. Springer (2013)

    Google Scholar 

  26. Georgieva, S., Markova, M., Pavlov, V.: Using neural network for credit card fraud detection, 2159, 030013 (2019). https://doi.org/10.1063/1.5127478

  27. Gómez, J.A., Arévalo, J., Paredes, R., Nin, J.: End-to-end neural network architecture for fraud scoring in card payments. Pattern Recogn. Lett. 105, 175–181 (2018)

    Article  Google Scholar 

  28. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  29. Grzymala-Busse, J.W., Goodwin, L.K., Grzymala-Busse, W.J., Zheng, X.: An approach to imbalanced data sets based on changing rule strength. In: Rough-Neural Computing, pp. 543–553. Springer, Berlin (2004)

    Google Scholar 

  30. Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learning from class-imbalanced data: Review of methods and applications. Expert Syst. Appl. 73, 220–239 (2017)

    Article  Google Scholar 

  31. Han, H., Wang, W.Y., Mao, B.H.: Borderline-smote: a new over-sampling method in imbalanced data sets learning. In: International Conference on Intelligent Computing, pp. 878–887. Springer (2005)

    Google Scholar 

  32. Hautamaki, V., Karkkainen, I., Franti, P.: Outlier detection using k-nearest neighbour graph. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 3, pp. 430–433. IEEE (2004)

    Google Scholar 

  33. He, G., Han, H., Wang, W.: An over-sampling expert system for learing from imbalanced data sets. In: 2005 International Conference on Neural Networks and Brain, vol. 1, pp. 537–541. IEEE (2005)

    Google Scholar 

  34. He, H., Bai, Y., Garcia, E.A., Li, S.: Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328. IEEE (2008)

    Google Scholar 

  35. He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recogn. Lett. 24(9–10), 1641–1650 (2003)

    Article  Google Scholar 

  36. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  37. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. 6(5), 429–449 (2002)

    Article  Google Scholar 

  38. Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance. J. Big Data 6(1), 1–54 (2019)

    Article  Google Scholar 

  39. Junsomboon, N., Phienthrakul, T.: Combining over-sampling and under-sampling techniques for imbalance dataset, pp. 243–247 (2017). https://doi.org/10.1145/3055635.3056643

  40. Kaur, R., Singh, S.: A survey of data mining and social network analysis based anomaly detection techniques. Egyptian Inf. J. 17(2), 199–216 (2016)

    Article  Google Scholar 

  41. Kim, J.Y., Cho, S.B.: Towards repayment prediction in peer-to-peer social lending using deep learning. Mathematics 7(11), 1041 (2019)

    Article  Google Scholar 

  42. Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-based outliers: algorithms and applications. VLDB J. 8(3), 237–253 (2000)

    Article  Google Scholar 

  43. Kong, J., Kowalczyk, W., Menzel, S., Bäck, T.: Improving imbalanced classification by anomaly detection. In: International Conference on Parallel Problem Solving from Nature, pp. 512–523. Springer (2020)

    Google Scholar 

  44. Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5(4), 221–232 (2016)

    Article  Google Scholar 

  45. Kruegel, C., Mutz, D., Robertson, W., Valeur, F.: Bayesian event classification for intrusion detection. In: 19th Annual Computer Security Applications Conference, 2003. Proceedings, pp. 14–23. IEEE (2003)

    Google Scholar 

  46. Kumar, M.S., Soundarya, V., Kavitha, S., Keerthika, E., Aswini, E.: Credit card fraud detection using random forest algorithm. In: 2019 3rd International Conference on Computing and Communications Technologies (ICCCT), pp. 149–153 (2019). https://doi.org/10.1109/ICCCT2.2019.8824930

  47. Kwon, D., Kim, H., Kim, J., Suh, S.C., Kim, I., Kim, K.J.: A survey of deep learning-based network anomaly detection. Clust. Comput. 22(1), 949–961 (2019)

    Article  Google Scholar 

  48. Li, K.L., Huang, H.K., Tian, S.F., Xu, W.: Improving one-class svm for anomaly detection. In: Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 03EX693), vol. 5, pp. 3077–3081. IEEE (2003)

    Google Scholar 

  49. Lin, W.C., Tsai, C.F., Hu, Y.H., Jhang, J.S.: Clustering-based undersampling in class-imbalanced data. Inf. Sci. 409, 17–26 (2017)

    Article  Google Scholar 

  50. Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 39(2), 539–550 (2008)

    Google Scholar 

  51. Maes, S., Tuyls, K., Vanschoenwinkel, B., Manderick, B.: Credit card fraud detection using bayesian and neural networks. In: Proceedings of the 1st International Naiso Congress on Neuro Fuzzy Technologies, pp. 261–270 (2002)

    Google Scholar 

  52. Modi, K., Dayma, R.: Review on fraud detection methods in credit card transactions. In: 2017 International Conference on Intelligent Computing and Control (I2C2), pp. 1–5. IEEE (2017)

    Google Scholar 

  53. Mubalaike, A.M., Adali, E.: Deep learning approach for intelligent financial fraud detection system. In: 2018 3rd International Conference on Computer Science and Engineering (UBMK), pp. 598–603. IEEE (2018)

    Google Scholar 

  54. Niu, X., Wang, L., Yang, X.: A comparison study of credit card fraud detection: supervised versus unsupervised (2019). arXiv:1904.10604

  55. Ozbayoglu, A.M., Gudelek, M.U., Sezer, O.B.: Deep learning for financial applications: a survey. Appl. Soft Comput. 93, 106384 (2020)

    Article  Google Scholar 

  56. Peng, Y., Kou, G., Shi, Y., Chen, Z.: Improving clustering analysis for credit card accounts classification. In: International Conference on Computational Science, pp. 548–553. Springer (2005)

    Google Scholar 

  57. Piciarelli, C., Micheloni, C., Foresti, G.L.: Trajectory-based anomalous event detection. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1544–1554 (2008)

    Article  Google Scholar 

  58. Pillai, T.R., Hashem, I.A.T., Brohi, S.N., Kaur, S., Marjani, M.: Credit card fraud detection using deep learning technique. In: 2018 Fourth International Conference on Advances in Computing, Communication & Automation (ICACCA), pp. 1–6. IEEE (2018)

    Google Scholar 

  59. Qiu, X., Zhang, L., Ren, Y., Suganthan, P.N., Amaratunga, G.: Ensemble deep learning for regression and time series forecasting. In: 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL), pp. 1–6 (2014). https://doi.org/10.1109/CIEL.2014.7015739

  60. Raghavan, P., Gayar, N.E.: Fraud detection using machine learning and deep learning. In: 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), pp. 334–339 (2019). https://doi.org/10.1109/ICCIKE47802.2019.9004231

  61. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions (2017). arXiv:1710.05941 (2017)

  62. RB, A., K R, S.: Credit card fraud detection using artificial neural network. Global Trans. Proc. 2 (2021). https://doi.org/10.1016/j.gltp.2021.01.006

  63. Sanabila, H.R., Jatmiko, W.: Ensemble learning on large scale financial imbalanced data. In: 2018 International Workshop on Big Data and Information Security (IWBIS), pp. 93–98. IEEE (2018)

    Google Scholar 

  64. Sarker, I.H.: Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2(6), 1–20 (2021)

    Article  MathSciNet  Google Scholar 

  65. Savage, D., Zhang, X., Yu, X., Chou, P., Wang, Q.: Anomaly detection in online social networks. Soc. Netw. 39, 62–70 (2014)

    Article  Google Scholar 

  66. Sohony, I., Pratap, R., Nambiar, U.: Ensemble learning for credit card fraud detection. In: Proceedings of the ACM India Joint International Conference on Data Science and Management of Data, pp. 289–294 (2018)

    Google Scholar 

  67. Sun, Y., Wong, A.K., Kamel, M.S.: Classification of imbalanced data: a review. Int. J. Pattern Recog. Artif. Intell. 23(04), 687–719 (2009)

    Article  Google Scholar 

  68. Vanerio, J., Casas, P.: Ensemble-learning approaches for network security and anomaly detection. In: Proceedings of the Workshop on Big Data Analytics and Machine Learning for Data Communication Networks, pp. 1–6 (2017)

    Google Scholar 

  69. Varmedja, D., Karanovic, M., Sladojevic, S., Arsenovic, M., Anderla, A.: Credit card fraud detection-machine learning methods. In: 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH), pp. 1–5. IEEE (2019)

    Google Scholar 

  70. Wang, H., Zhu, P., Zou, X., Qin, S.: An ensemble learning framework for credit card fraud detection based on training set partitioning and clustering. In: 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 94–98. IEEE (2018)

    Google Scholar 

  71. Wiese, B., Omlin, C.: Credit card transactions, fraud detection, and machine learning: modelling time with lstm recurrent neural networks. In: Innovations in Neural Information Paradigms and Applications, pp. 231–268. Springer (2009)

    Google Scholar 

  72. Xie, X., Xiong, J., Lu, L., Gui, G., Yang, J., Fan, S., Li, H.: Generative adversarial network-based credit card fraud detection. In: International Conference in Communications, Signal Processing, and Systems, pp. 1007–1014. Springer (2018)

    Google Scholar 

  73. Xie, Y., Li, A., Gao, L., Liu, Z.: A heterogeneous ensemble learning model based on data distribution for credit card fraud detection. Wireless Commun. Mobile Comput. 2021 (2021)

    Google Scholar 

  74. Xuan, S., Liu, G., Li, Z., Zheng, L., Wang, S., Jiang, C.: Random forest for credit card fraud detection. In: 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6. IEEE (2018)

    Google Scholar 

  75. Yap, B.W., Abd Rani, K., Abd Rahman, H.A., Fong, S., Khairudin, Z., Abdullah, N.N.: An application of oversampling, undersampling, bagging and boosting in handling imbalanced datasets. In: Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013), pp. 13–22. Springer (2014)

    Google Scholar 

  76. Yu, L., Zhou, R., Tang, L., Chen, R.: A dbn-based resampling svm ensemble learning paradigm for credit classification with imbalanced data. Appl. Soft Comput. 69, 192–202 (2018)

    Article  Google Scholar 

  77. Zamini, M., Montazer, G.: Credit card fraud detection using autoencoder based clustering. In: 2018 9th International Symposium on Telecommunications (IST), pp. 486–491 (2018). https://doi.org/10.1109/ISTEL.2018.8661129

  78. Zhou, Z.H.: Ensemble learning. In: Machine Learning, pp. 181–210. Springer, Berlin (2021)

    Google Scholar 

  79. Zou, J., Zhang, J., Jiang, P.: Credit card fraud detection using autoencoder neural network (2019). arXiv:1908.11553

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaishali Kansal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kansal, V., Pandey, P. (2022). Deep Digging of Anomalous Transactions in Financial Networks with Imbalanced Data. In: Hong, TP., Serrano-Estrada, L., Saxena, A., Biswas, A. (eds) Deep Learning for Social Media Data Analytics. Studies in Big Data, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-031-10869-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10869-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10868-6

  • Online ISBN: 978-3-031-10869-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics