Skip to main content

Perceived Usability in User-Centered Design: Analysis of Usability Aspects for Improving Human-Machine Systems

  • Chapter
  • First Online:
Human-Automation Interaction

Part of the book series: Automation, Collaboration, & E-Services ((ACES,volume 10))

  • 620 Accesses

Abstract

The development of user-centered designed products offers great benefits for the user by increasing the perceived usability of the product. To achieve this, the interactions within the human–machine system must be comprehensively understood, which is currently often time-consuming, costly, and inefficient for product development. The user-centered design approach is therefore still rarely applied. This article presents a structured approach for developing user-centered products by optimizing perceived usability. The article is divided into the presentation of a thought model for the designer and a process for the application of the model. The Usability Study Evaluation Model (USE-Model) aims to identify relevant product properties that can improve the user’s perception. It thus helps to gain an understanding of the complex interaction between the user, the technical system, and the environment. The Usability Study Evaluation Process (USE-Process) presents a guideline for using the model within a development process. The process is divided into three steps: identification, evaluation, and quantification. The steps provide the designer with specific courses of action, starting with analysis in field studies and ending with testing and measurement of influencing factors in laboratory tests. The USE-Model and the USE-Process are intended to improve the development of user-centered designed products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fraser TM (1980) Ergonomic principles in the design of hand tools. Occupational safety and health series, vol 44, Geneva

    Google Scholar 

  2. Kuijt-Evers LFM, Vink P, de Looze MP (2007) Comfort predictors for different kinds of hand tools: differences and similarities. Int J Ind Ergon 37:73–84. https://doi.org/10.1016/j.ergon.2006.09.019

    Article  Google Scholar 

  3. Päivinen M, Heinimaa T (2009) The usability and ergonomics of axes. Appl Ergon 40:790–796. https://doi.org/10.1016/j.apergo.2008.08.002

    Article  Google Scholar 

  4. Cooper RG, Kleinschmidt EJ (1987) Success factors in product innovation. Ind Mark Manage 16:215–223. https://doi.org/10.1016/0019-8501(87)90029-0

    Article  Google Scholar 

  5. Hutchison D, Kanade T, Kittler J et al. (2013) Design, user experience, and usability. Web, Mobile, and Product Design, vol 8015. Springer, Berlin

    Google Scholar 

  6. Mao J-Y, Vredenburg K, Smith PW et al (2005) The state of user-centered design practice. Commun ACM 48:105–109. https://doi.org/10.1145/1047671.1047677

    Article  Google Scholar 

  7. Llinares C, Page AF (2011) Kano’s model in Kansei Engineering to evaluate subjective real estate consumer preferences. Int J Ind Ergon 41:233–246. https://doi.org/10.1016/j.ergon.2011.01.011

    Article  Google Scholar 

  8. Kuijt-Evers LFM, Groenesteijn L, de Looze MP et al (2004) Identifying factors of comfort in using hand tools. Appl Ergon 35:453–458. https://doi.org/10.1016/j.apergo.2004.04.001

    Article  Google Scholar 

  9. ISO 9241-210:2019 Ergonomics of human-system interaction—Part 210: Human-centred design for interactive systems

    Google Scholar 

  10. Dianat I, Rahimi S, Nedaei M et al (2017) Effects of tool handle dimension and workpiece orientation and size on wrist ulnar/radial torque strength, usability and discomfort in a wrench task. Appl Ergon 59:422–430. https://doi.org/10.1016/j.apergo.2016.10.004

    Article  Google Scholar 

  11. Hassenzahl M (2010) Experience design: technology for all the right reasons. Synth Lect Hum-Centered Inf 3:1–95. https://doi.org/10.2200/S00261ED1V01Y201003HCI008

    Article  Google Scholar 

  12. Aptel M, Claudon L, Marsot J (2002) Integration of ergonomics into hand tool design: principle and presentation of an example. Int J Occup Saf Ergon 8:107–115. https://doi.org/10.1080/10803548.2002.11076518

    Article  Google Scholar 

  13. Khalid HM, Helander MG (2006) Customer emotional needs in product design. Concurr Eng 14:197–206. https://doi.org/10.1177/1063293X06068387

    Article  Google Scholar 

  14. Germann R, Jahnke B, Matthiesen S (2019) Objective usability evaluation of drywall screwdriver under consideration of the user experience. Appl Ergon 75:170–177. https://doi.org/10.1016/j.apergo.2018.10.001

    Article  Google Scholar 

  15. Germann R, Kurth L, Matthiesen S (2018) Usability testing—objective evaluation of the application quality of power tools under consideration of the brand influence. Manuskript eingereicht zur Publikation. https://doi.org/10.5445/IR/1000082412

    Article  Google Scholar 

  16. Adler M, Hermann H-J, Koldehoff M et al. (2010) Ergonomiekompendium: Anwendung ergonomischer Regeln und Prüfung der Gebrauchstauglichkeit von Produkten (Ergonomics compendium: application of ergonomic rules and testing of the usability of products), 1. Aufl. BAuA, Dortmund

    Google Scholar 

  17. Matthiesen S, Germann R, Schmidt S et al. (2016) Prozessmodell zur anwendungsorientierten Entwicklung von power-tools (Process model for application-oriented design of power tools). In: Weidner R (ed) Technische Unterstützungssysteme, die die Menschen wirklich wollen, Hamburg, pp 223–232

    Google Scholar 

  18. Matthiesen S, Germann R (2018) Meaningful prediction parameters for evaluating the suitability of power tools for usage. Procedia CIRP 70:241–246. https://doi.org/10.1016/j.procir.2018.02.040

    Article  Google Scholar 

  19. Dumas JS, Redish JC (1999) A practical guide to usability testing. Rev. edn. Intellect, Exeter

    Google Scholar 

  20. Vink P, Miedema M, Koningsveld E et al (2002) Physical effects of new devices for bricklayers. Int J Occup Saf Ergon 8:71–82. https://doi.org/10.1080/10803548.2002.11076515

    Article  Google Scholar 

  21. Karen H, Sandra J (2017) Contextual inquiry: a participatory technique for system design. In: Participatory design. CRC Press, pp 177–210

    Google Scholar 

  22. van Someren MW, Barnard YF, Sandberg JAC (1994) The think aloud method: a practical guide to modelling cognitive processes. In: Knowledge-based systems. Academic, London, UK

    Google Scholar 

  23. Charness G, Gneezy U, Kuhn MA (2012) Experimental methods: between-subject and within-subject design. J Econ Behav Organ 81:1–8. https://doi.org/10.1016/j.jebo.2011.08.009

    Article  Google Scholar 

  24. Karapanos E, Zimmerman J, Forlizzi J et al. (2009) User experience over time: an initial framework. In: Olsen DR, Arthur RB, Hinckley K et al. (eds) Proceedings of the 27th international conference on human factors in computing systems—CHI 09. ACM Press, New York, USA, p 729

    Google Scholar 

  25. Malinowska-Borowska J, Zieliński G (2013) Coupling forces exerted on chain saws by inexperienced tree fellers. Int J Ind Ergon 43:283–287. https://doi.org/10.1016/j.ergon.2013.04.006

    Article  Google Scholar 

  26. Matthiesen S, Gwosch T, Schäfer T et al. (2016) Experimentelle Ermittlung von Bauteilbelastungen eines Power Tool Antriebsstrangs durch indirektes Messen in realitätsnahen Anwendungen als ein Baustein in der Teilsystemvalidierung (Experimental determination of component loads of a power tool powertrain by indirect measurement in realistic applications as a building block in subsystem validation). Forschung im Ingenieurwesen Originalarbeiten

    Google Scholar 

  27. Matthiesen S, Dörr M, Zimprich S (2018) Testfallgenerierung—Vorgehen zur Lastkollektivermittlung durch Data Mining am Winkelschleifer (Test case creation—procedure for load spectrum determination by data mining on angle grinder): 29. In: Dieter Krause KP (ed) DfX-Symposium 2018, vol 29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Matthiesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Germann, R., Helmstetter, S., Fotler, D., Matthiesen, S. (2023). Perceived Usability in User-Centered Design: Analysis of Usability Aspects for Improving Human-Machine Systems. In: Duffy, V.G., Lehto, M., Yih, Y., Proctor, R.W. (eds) Human-Automation Interaction. Automation, Collaboration, & E-Services, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-031-10780-1_3

Download citation

Publish with us

Policies and ethics