Skip to main content

Fault Diagnosis: Human Performance in the Digital and Automation Context

  • Chapter
  • First Online:
Human-Automation Interaction

Part of the book series: Automation, Collaboration, & E-Services ((ACES,volume 10))

  • 611 Accesses

Abstract

Diagnosis is a cognitively difficult task for operators working in the control rooms of complex industrial systems. The complexity of contemporary industrial systems increases with the application of digital and automation technologies, making fault diagnosis of such systems even more challenging to human operators. This chapter proposes a framework for human factors research on fault diagnosis, including diagnosis models and strategies, factors influencing human diagnosis performance, and methods to improve diagnosis task performance. As a general idea, automation should facilitate, help, and even collaborate with human operators to perform fault diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ALQahtani DA, Rotgans JI, Mamede S et al (2016) Does time pressure have a negative effect on diagnostic accuracy? Acad Med J Assoc Am Med Colleges 91(5):710–716

    Google Scholar 

  2. Andresen G (2010) Information display design: three attempts at superseding the traditional process mimic display. In: Skjerve AB, Bye A (eds) Simulator-based human factors studies across 25 years. Springer, London, pp 169–180

    Google Scholar 

  3. Berg O, Kaarstad M, Farbrot JE, Nihlwing C, Karlsson T, Torralba B (2011) Chapter 10: alarm systems. In: Skjerve AB, Bye A (eds) Simulator-based human factors studies across 25 years—the history of the Halden man-machine laboratory. Springer, New York, pp 155–167

    Google Scholar 

  4. Besnard D, Bastien-Toniazzo M (1999) Expert error in trouble-shooting: an exploratory study in electronics. Int J Hum Comput Stud 50(5):391–405

    Article  Google Scholar 

  5. Betancourt L, Birla S, Gassino J, Regnier P (2011) Suitability of fault modes and effects analysis for regulatory assurance of complex logic in digital instrumentation and control systems (Report No. NUREG/IA-0254). U.S. Nuclear Regulatory Commission, Washington, DC

    Google Scholar 

  6. Bhaskara A, Duong L, Brooks J et al (2021) Effect of automation transparency in the management of multiple unmanned vehicles. Appl Ergon 90:103243

    Article  Google Scholar 

  7. Bolstad CA, Endsley MR (2000) The effect of task load and shared displays on team situation awareness. In: Proceedings of the human factors and ergonomics society annual meeting, vol 44, no 1. SAGE Publications, Los Angeles, pp 189–192

    Google Scholar 

  8. Bransby M (2001) Design of alarm systems. In: Noyes J, Bransby M (eds) People in control: human factors in control room design. The Institution of Electrical Engineers, London, pp 207–221

    Google Scholar 

  9. Brinkman JA (1993) Verbal protocol accuracy in fault diagnosis. Ergonomics 36(11):1381–1397

    Article  Google Scholar 

  10. Brown J (1958) Some tests of the decay theory of immediate memory. Quarterly J Exp Psychol 10(1):12–21

    Article  Google Scholar 

  11. Brown WS, O’Hara JM, Higgins JC (2000) Advanced alarm systems: revision of guidance and its technical basis (Report No. BNL-NUREG-52593). Brookhaven National Lab, Upton

    Google Scholar 

  12. Burkolter D, Kluge A, Sauer J, Ritzmann S (2009) The predictive qualities of operator characteristics for process control performance: the influence of personality and cognitive variables. Ergonomics 52(3):302–311

    Article  Google Scholar 

  13. Burns CM (2000) Navigation strategies with ecological displays. Int J Hum Comput Stud 52(1):111–129

    Article  Google Scholar 

  14. Burns CM, Hajdukiewicz JR (2004) Ecological interface design. CRC Press

    Google Scholar 

  15. Card SK, Moran TP, Newell A (1986) The model human processor: an engineering model of human performance. In: Boff KR, Kaufman L, Thomas JP (eds) Handbook of perception and human performance, vol 2. Cognitive processes and performance. Wiley, pp 1–35

    Google Scholar 

  16. Carlson RA, Lundy DH, Schneider W (1992) Strategy guidance and memory aiding in learning a problem-solving skill. Hum Factors 34(2):129–145

    Article  Google Scholar 

  17. Carvalho PV, dos Santos IL, Gomes JO, Borges MR, Guerlain S (2008) Human factors approach for evaluation and redesign of human–system interfaces of a nuclear power plant simulator. Displays 29(3):273–284

    Article  Google Scholar 

  18. Chandler F, Chang Y, Mosleh A et al (2006) Human reliability analysis methods: selection guidance for NASA (NASA/OSMA Technical Report). NASA Office of Safety and Mission Assurance, Washington, DC

    Google Scholar 

  19. Chandrasekaran B, Mittal S (1983) Deep versus compiled knowledge approaches to diagnostic problem-solving. Int J Man Mach Stud 19(5):425–436

    Article  Google Scholar 

  20. Chase WG, Simon HA (1973) Perception in chess. Cogn Psychol 4(1):55–81

    Article  Google Scholar 

  21. Chen K (2015) Diagnosis task performance influencing factors in digitalized industrial systems. Ph.D. dissertation, Tsinghua University

    Google Scholar 

  22. Chen KJ, Li ZZ (2015) How does information congruence influence diagnosis performance? Ergonomics 58(6):924–934

    Article  Google Scholar 

  23. Chen KJ, Li ZZ, Jamieson GA (2017) Influence of information layout on diagnosis performance. IEEE Trans Human-Mach Syst 48(3):316–323

    Article  Google Scholar 

  24. Cornell FG, Damrin DE, Saupe JL, Crowder NA (1954) Proficiency of Q-24 radar mechanics: III. The tab test-a group test of trouble-shooting proficiency (Report. No. AFPTRC TR 54-52). Air Force Personnel & Training Research Center, San Antonio, Texas, US

    Google Scholar 

  25. Cooke NJ, Gorman JC, Duran JL, Taylor AR (2007) Team cognition in experienced command-and-control teams. J Exp Psychol Appl 13(3):146

    Article  Google Scholar 

  26. Costello AM, Strater L, Bolstad CA et al (2006) Communication and situation awareness in ad hoc teams. In: Proceedings of the 25th army science conference. Department of the Army, Orlando, FL, pp 27–30

    Google Scholar 

  27. Dawes RM, Faust D, Meehl PE (1989) Clinical versus actuarial judgment. Science 243(4899):1668–1674

    Article  Google Scholar 

  28. Ding XS, Li ZZ, She MR (2017) Effects of information acquisition method on diagnostic task performance using digitalized interfaces. In: International conference on applied human factors and ergonomics. Springer, Heidelberg, pp 300–309

    Google Scholar 

  29. Dong R, Yang X, Xing B, Zou Z, Zheng Z, Xie X et al (2015) Use of concept maps to promote electrocardiogram diagnosis learning in undergraduate medical students. Int J Clin Exp Med 8(5):7794–7801

    Google Scholar 

  30. Dougherty MR, Hunter JE (2003) Hypothesis generation, probability judgment, and individual differences in working memory capacity. Acta Physiol (Oxf) 113(3):263–282

    Google Scholar 

  31. Duncan KD (1971) Long-term retention and transfer of an industrial search skill. Br J Psychol 62(4):439–448

    Article  Google Scholar 

  32. Duncan KD, Gray MJ (1975) An evaluation of a fault-finding training course for refinery process operators. J Occup Organ Psychol 48(4):199–218

    Article  Google Scholar 

  33. Easter JR, Lot L (1992) Back-fitting a fully computerized alarm system into an operating Westinghouse PWR: a progress report. In: Proceedings of the IEEE conference on human factors & power plants. IEEE, Piscataway, NJ, pp 338–341

    Google Scholar 

  34. Elstein AS, Shulman LS, Sprafka SA (1978) Medical problem solving. Harvard University Press, Cambridge, MA

    Book  Google Scholar 

  35. Finch CR (1971) Troubleshooting instruction in vocational-technical education via dynamic simulation, final report. Distributed by ERIC Clearinghouse

    Google Scholar 

  36. Gao H, Shen E, Losh S, Turner J (2007) A review of studies on collaborative concept mapping: what have we learned about the technique and what is next? J Interact Learn Res 18(4):479–492

    Google Scholar 

  37. Grosdeva T, Demontmollin M (1994) Reasoning and knowledge of nuclear power plant operators in case of accidents. Appl Ergon 25(5):305–309

    Article  Google Scholar 

  38. Ham DH, Yoon WC (2001) The effects of presenting functionally abstracted information in fault diagnosis tasks. Reliab Eng Syst Saf 73(2):103–119

    Article  Google Scholar 

  39. Ham DH, Yoon CW (2007) The training effects of principle knowledge on fault diagnosis performance. Hum Factors Ergon Manuf Service Ind 17(3):263–282

    Article  MathSciNet  Google Scholar 

  40. Hamm R (1996) Physicians neglect base rates, and it matters. Behav Brain Sci 19(1):25–26

    Article  Google Scholar 

  41. Helmreich RL (2000) On error management: lessons from aviation. BMJ 320(7237):781

    Article  Google Scholar 

  42. Henneman RL, Rouse WB (1987) Measures of human problem solving performance in fault diagnosis tasks. IEEE Trans Syst Man Cybern SMC-14(1):99–112

    Google Scholar 

  43. Huang FH, Lee YL, Hwang SL, Yenn TC, Yu YC, Hsu CC, Huang HW (2007) Experimental evaluation of human–system interaction on alarm design. Nucl Eng Des 237(3):308–315

    Article  Google Scholar 

  44. Jamieson GA (2007) Ecological interface design for petrochemical process control: an empirical assessment. IEEE Trans Syst Man Cybern-Part A: Syst Hum 37(6):906–920

    Article  Google Scholar 

  45. Jamieson GA, Vicente KJ (2001) Ecological interface design for petrochemical applications: supporting operator adaptation, continuous learning, and distributed, collaborative work. Comput Chem Eng 25(7–8):1055–1074

    Article  Google Scholar 

  46. Jamieson GA, Miller CA, Ho WH, Vicente KJ (2007) Integrating task- and work domain-based work analyses in ecological interface design: a process control case study. IEEE Trans Syst Man Cybern—Part A: Syst Hum 37(6):887–905

    Article  Google Scholar 

  47. Johnston JH, Smith-Jentsch KA, Cannon-Bowers JA (1997) Performance measurement tools for enhancing team decision-making training. In: Brannick MT, Salas E, Prince C (eds) Team performance assessment and measurement: theory, methods, and applications. Lawrence Erlbaum, NJ, pp 311–327

    Google Scholar 

  48. Johnson-Laird PN (1983) Mental models: towards a cognitive science of language, inference, and consciousness. Harvard University Press, Cambridge, MA

    Google Scholar 

  49. Kariuki SG, Löwe K (2007) Integrating human factors into process hazard analysis. Reliab Eng Syst Saf 92(12):1764–1773

    Article  Google Scholar 

  50. Kahneman D, Tversky A (1973) On the psychology of prediction. Psychol Rev 80(4):237–251

    Article  Google Scholar 

  51. Kim AR, Kim JH, Jang I, Seong PH (2018) A framework to estimate probability of diagnosis error in NPP advanced MCR. Ann Nucl Energy 111:31–40

    Article  Google Scholar 

  52. Kim IS (1994) Computerized systems for on-line management of failures: a state-of-the-art discussion of alarm systems and diagnostic systems applied in the nuclear industry. Reliab Eng Syst Saf 44(3):279–295

    Article  Google Scholar 

  53. Kim JH, Seong PH (2007) The effect of information types on diagnostic strategies in the information aid. Reliab Eng Syst Saf 92(2):171–186

    Article  Google Scholar 

  54. Klimoski R, Mohammed S (1994) Team mental model: construct or metaphor? J Manag 20(2):403–437

    Google Scholar 

  55. Kluge A, Termer A (2017) Human-centered design (HCD) of a fault-finding application for mobile devices and its impact on the reduction of time in fault diagnosis in the manufacturing industry. Appl Ergon 59(Pt A):170–181

    Article  Google Scholar 

  56. Korsah K, Cetiner MS, Muhlheim MD, Poore WP (2010) An investigation of digital instrumentation and control system failure modes (Report No. ORNL/TM-2010/32). Oak Ridge National Laboratory, Oak Ridge, TN

    Google Scholar 

  57. Kozlowski SWJ, Klein KJ (2000) A multilevel approach to theory and research in organizations: contextual, temporal, and emergent processes. In: Klein KJ, Kozlowski SWJ (eds) Multilevel theory, research, and methods in organizations: foundations, extensions and new directions. Jossey-Bass, San Francisco, CA, pp 3–90

    Google Scholar 

  58. Laberge JC, Bullemer P, Tolsma M, Dal Vernon CR (2014) Addressing alarm flood situations in the process industries through alarm summary display design and alarm response strategy. Int J Ind Ergon 44(3):395–406

    Article  Google Scholar 

  59. Larkin J, Mcdermott J, Simon DP, Simon HA (1980) Expert and novice performance in solving physics problems. Science 208(4450):1335–1342

    Article  Google Scholar 

  60. Lau N, Jamieson GA, Skraaning G, Burns CM (2008) Ecological interface design in the nuclear domain: an empirical evaluation of ecological displays for the secondary subsystems of a boiling water reactor plant simulator. IEEE Trans Nucl Sci 55(6):3597–3610

    Article  Google Scholar 

  61. Lee HJ, Park DY, Ahn BS, Park YM, Park JK, Venkata SS (2000) A Fuzzy expert system for the integrated fault diagnosis. IEEE Trans Power Delivery 15:833–845

    Article  Google Scholar 

  62. Lin CJ, Hsieh TL, Yang CW, Huang RJ (2016) The impact of computer-based procedures on team performance, communication, and situation awareness. Int J Ind Ergon 51:21–29

    Article  Google Scholar 

  63. Lin M, Hou D, Liu P, Yang Z, Yang Y (2010) Main control system verification and validation of NPP digital I&C system based on engineering simulator. Nucl Eng Des 240(7):1887–1896

    Article  Google Scholar 

  64. Lind M (1994) Modeling goals and functions of complex industrial plants. Appl Artif Intell 8(2):259–283

    Article  Google Scholar 

  65. Lingard L, Espin S, Whyte S et al (2004) Communication failures in the operating room: an observational classification of recurrent types and effects. Qual Safety Healthcare 13(5):330–334

    Article  Google Scholar 

  66. Linz M (2012) Scenarios for the aviation industry: a Delphi-based analysis for 2025. J Air Transp Manag 22:28–35

    Article  Google Scholar 

  67. Liu P, Li ZZ (2012) Task complexity: a review and conceptualization framework. Int J Ind Ergon 42(6):553–568

    Article  Google Scholar 

  68. Lyu X, Li ZZ (2019) Predictors for human performance in information seeking, information integration, and overall process in diagnostic tasks. Int J Human-Comput Interaction 35(19):1831–1841

    Article  Google Scholar 

  69. Lyu X, Li Z (2020) Correlations between human performance in information seeking, information integration, and overall process in diagnostic tasks. Int J Hum-Comput Interaction 36(3):285–294

    Article  Google Scholar 

  70. Maule AJ, Hockey GR, Bdzola L (2000) Effects of time-pressure on decision-making under uncertainty: changes in affective state and information processing strategy. Acta Physiol (Oxf) 104(3):283–301

    Google Scholar 

  71. Medin DL, Edelson SM (1988) Problem structure and the use of base-rate information from experience. J Exp Psychol Gen 117(1):68

    Article  Google Scholar 

  72. Meyer AND, Payne VL, Meeks DW, Rao R, Singh H (2013) Physicians’ diagnostic accuracy, confidence, and resource requests: a vignette study. JAMA Internal Med 173(21):1952

    Google Scholar 

  73. Miller JG (1960) Information input overload and psychopathology. Am J Psychiatry 116(8):695–704

    Article  Google Scholar 

  74. Miller CA, Vicente KJ (1999) Task “versus” work domain analysis techniques: a comparative analysis. Proc Hum Factors Ergon Soc Ann Meeting 43(3):328–332

    Article  Google Scholar 

  75. Miller CA, Vicente KJ (2001) Comparison of display requirements generated via hierarchical task and abstraction-decomposition space analysis techniques. Int J Cogn Ergon 5(3):335–355

    Article  Google Scholar 

  76. Mohammed S, Ferzandi L, Hamilton K (2010) Metaphor no more: a 15-year review of the team mental model construct. J Manag 36(4):876–910

    Google Scholar 

  77. Monteiro SD, Sherbino JD, Ilgen JS et al (2015) Disrupting diagnostic reasoning: do interruptions, instructions, and experience affect the diagnostic accuracy and response time of residents and emergency physicians? Acad Med J Assoc Am Med Colleges 90(4):511–517

    Article  Google Scholar 

  78. Morris NM, Rouse WB (1985) Review and evaluation of empirical research in troubleshooting. Hum Factors 27(5):503–530

    Article  Google Scholar 

  79. Morris NM, Rouse WB (1985) The effects of type of knowledge upon human problem solving in a process control task. IEEE Trans Syst Man Cybern SMC-15(6):698–707

    Google Scholar 

  80. Mosier KL, Fischer UM (2010) Judgment and decision making by individuals and teams: issues, models, and applications. Rev Hum Factors Ergon 6(1):198–256

    Article  Google Scholar 

  81. Mosier KL, Sethi N, Mccauley S, Khoo L, Orasanu JM (2007) What you don’t know can hurt you: factors impacting diagnosis in the automated cockpit. Hum Factors 49(2):300–310

    Article  Google Scholar 

  82. Müller R, Gögel C, Bönsel R (2020) Data or interpretations: impacts of information presentation strategies on diagnostic processes. Hum Factors Ergon Manuf Service Ind 30:266–281

    Article  Google Scholar 

  83. Mumaw RJ, Roth EM, Vicente KJ, Burns CM (2000) There is more to monitoring a nuclear power plant than meets the eye. Hum Factors 42(1):36–55

    Article  Google Scholar 

  84. Naikar N (2013) Work domain analysis: concepts, guidelines, and cases. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  85. Norman GR, Rosenthal D, Brooks LR, Allen SW, Muzzin LJ (1989) The development of expertise in dermatology. Arch Dermatol 125(8):1063–1068

    Article  Google Scholar 

  86. Norman G, Sherbino J, Dore K et al (2014) The etiology of diagnostic errors: a controlled trial of system 1 versus system 2 reasoning. Acad Med J Assoc Am Med Colleges 89(2):277–284

    Article  Google Scholar 

  87. O’Hara JM, Fleger S (2020) Human-system interface design review guidelines (NUREG-0700, Rev 3). U.S. Nuclear Regulatory Commission, Washington, DC

    Google Scholar 

  88. O’Hara JM, Brown WS, Hallbert B et al (2000) The effects of alarm display, processing, and availability on crew performance (Report No. NUREG/CR-52600). U.S. Nuclear Regulatory Commission, Washington, DC

    Google Scholar 

  89. O'Hara JM, Brown WS, Lewis PM, Persensky JJ (2002) The effects of interface management tasks on crew performance and safety in complex, computer-based systems: Detailed Analysis (Report No. NUREG/CR-6690, Vol. 2). US Nuclear Regulatory Commission, Washington, DC

    Google Scholar 

  90. Pan D, Yang L, She MR, Ding XS, Li ZZ (2020) Effect of cognitive style and information acquisition method on diagnosis task performance. Int J Hum-Comput Interaction 36(13):1231–1241

    Article  Google Scholar 

  91. Park JK, Choi SS, Hong JH, Chang SH (1997) Development of the effectiveness measure for an advanced alarm system using signal detection theory. IEEE Trans Nucl Sci 44(2):163–172

    Article  Google Scholar 

  92. Parks DL, Boucek GP (1989) Workload prediction, diagnosis, and continuing challenges. Applications of human performance models to system design. Springer, Boston, MA, pp 47–63

    Chapter  Google Scholar 

  93. Parush A, Kramer C, Foster-Hunt T et al (2011) Communication and team situation awareness in the OR: implications for augmentative information display. J Biomed Inform 44(3):477–485

    Article  Google Scholar 

  94. Patel VL, Groen GJ (1991) The general and specific nature of medical expertise: a critical look. In: Ericsson KA, Smith J (eds) Toward a general theory of expertise: prospects and limits. Cambridge University Press, Cambridge, UK, pp 93–125

    Google Scholar 

  95. Patra PSK, Sahu DP, Mandal I (2010) An expert system for diagnosis of human diseases. Int J Comput Appl 1(13):71–73

    Google Scholar 

  96. Patrick J (1999) Analyzing operators’ diagnostic reasoning during multiple events. Ergonomics 42(3):493–515

    Article  Google Scholar 

  97. Patrick J, Haines B (1988) Training and transfer of fault-finding skill. Ergonomics 31(2):193–210

    Article  Google Scholar 

  98. Patrick J, Haines B, Munley G, Wallace A (1989) Transfer of fault-finding between simulated chemical plants. Hum Factors 31(5):503–518

    Article  Google Scholar 

  99. Patrick J, James N, Friend C (1996) A field study of training fault-finding. Le Travail Humain 59(1):23–44

    Google Scholar 

  100. Pérez-Mata N, Diges M (2007) False recollections and the congruence of suggested information. Memory 15(7):701–717

    Article  Google Scholar 

  101. Perrot F, Travé-Massuyès L (2009) Making use of problem structure in static and dynamic constraint-based diagnosis. IFAC Proc Vol 42(8):1324–1329

    Article  Google Scholar 

  102. Pfaff MS (2012) Negative affect reduces team awareness: the effects of mood and stress on computer-mediated team communication. Hum Factors 54(4):560–571

    Article  Google Scholar 

  103. Potter SS, Woods DD (1991) Event driven timeline displays: beyond message lists in human-intelligent system interaction. In: Proceedings of the IEEE international conference on decision aiding for complex systems. IEEE, pp 1283–1288

    Google Scholar 

  104. Rasmussen J (1985) The role of hierarchical knowledge representation in decision making and system management. IEEE Trans Syst Man Cybern SMC-15(2):234–243

    Google Scholar 

  105. Rasmussen J (1993) Diagnostic reasoning in action. IEEE Trans Syst Man Cybern 23(4):981–992

    Article  Google Scholar 

  106. Rasmussen J, Rouse WB (1981) Human detection and diagnosis of system failures. Plenum Press, New York-London

    Book  Google Scholar 

  107. Rasmussen J, Jensen A (1974) Mental procedures in real-life tasks: a case study of electronic trouble shooting. Ergonomics 17(3):293–307

    Article  Google Scholar 

  108. Reason J (1990) The contribution of latent human failures to the breakdown of complex systems. Philos Trans Royal Soc B: Biol Sci 327(1241):475–484

    Google Scholar 

  109. Reed NE, Johnson PE (1993) Analysis of expert reasoning in hardware diagnosis. Academic Press Ltd

    Google Scholar 

  110. Reising DV, Sanderson PM (2002) Work domain analysis and sensors II: Pasteurizer II case study. Int J Hum Comput Stud 56(6):597–637

    Article  Google Scholar 

  111. Ren J, Jenkinson I, Wang J, Xu DL, Yang JB (2008) A methodology to model causal relationships on offshore safety assessment focusing on human and organizational factors. J Safety Res 39(1):87–100

    Article  Google Scholar 

  112. Riding R, Cheema I (1991) Cognitive styles: an overview and integration. Educ Psychol 11(3–4):193–215

    Article  Google Scholar 

  113. Ross CT, John AA (1997) The reduction of uncertainty and troubleshooting performance. Hum Factors 39(2):254–267

    Article  Google Scholar 

  114. Rouse WB (1978) Human problem solving performance in a fault diagnosis task. IEEE Trans Syst Man Cybern 8(4):258–271

    Article  Google Scholar 

  115. Rouse WB, Rouse SH (1979) Measures of complexity of fault diagnosis tasks. IEEE Trans Syst Man Cybern 9(11):720–727

    Article  Google Scholar 

  116. Rouse WB, Morris NM (1986) On looking into the black box: prospects and limits in the search for mental models. Psychol Bull 100(3):349

    Article  Google Scholar 

  117. Saarni R, Andresen G, Nystad E (2002) Integrated task-oriented display system: first user test (Report No. HWR-701). ECD Halden Reactor Project, Halden, Norway

    Google Scholar 

  118. Salas E, Cannon-Bowers JA (1997) Methods, tools, and strategies for team training. In: Quinones MA, Ehrenstein A (eds) Training for a rapidly changing workplace: applications of psychological research. American Psychological Association, Washington, DC, pp 249–279

    Chapter  Google Scholar 

  119. Salas E, Dickinson TL, Converse SA, Tannenbaum SI (1992) Toward an understanding of team performance and training. In: Swezey RW, Salas E (eds) Teams: their training and performance. Ablex Publishing, Norwood, NJ, pp 3–29

    Google Scholar 

  120. Salas E, Rosen MA, Burke CS, Nicholson D, Howse WR (2007) Markers for enhancing team cognition in complex environments: the power of team performance diagnosis. Aviat Space Environ Med 78(5):B77–B85

    Google Scholar 

  121. Salas E, Shuffler ML, Thayer AL, Bedwell WL, Lazzara EH (2015) Understanding and improving teamwork in organizations: a scientifically based practical guide. Hum Resour Manage 54(4):599–622

    Article  Google Scholar 

  122. Sanderson PM, Appeddu T, Reising DVC (1992) Mental set and complexity effects in the diagnosis of simultaneous faults in a simple binary adder. In: Stassen HG (ed) Analysis, design and evaluation of man–machine systems 1992. Pergamon Press, Headington Hill Hall, UK, pp 139–144

    Google Scholar 

  123. Schraagen JMC, Schaafstal AM (1996) Training of systematic diagnosis: a case study in electronics troubleshooting. Le Travail Humain 59(1):5–21

    Google Scholar 

  124. Sebok A (2000) Team performance in process control: influences of interface design and staffing levels. Ergonomics 43(8):1210–1236

    Article  Google Scholar 

  125. She MR (2020) The influences of information sharing and mental model on team situation awareness in computerized environments. PhD thesis, Tsinghua University (In Chinese)

    Google Scholar 

  126. She MR, Li ZZ (2017) Design and evaluation of a team mutual awareness toolkit for digital interfaces of nuclear power plant context. Int J Hum-Comput Interaction 33(9):744–755

    Article  Google Scholar 

  127. She MR, Li ZZ, Ma L (2019) User-defined information sharing for team situation awareness and teamwork. Ergonomics 62(8):1098–1112

    Article  Google Scholar 

  128. Shepherd A (1989) Analysis and training in information technology tasks. In: Chichester DD (ed) Task analysis for human-computer interaction. Ellis Horwood, UK, pp 15–55

    Google Scholar 

  129. Sherbino J, Dore KL, Wood TJ et al (2012) The relationship between response time and diagnostic accuracy. Acad Med 87(6):785–791

    Article  Google Scholar 

  130. Skraaning G, Jamieson GA (2019) Human performance benefits of the automation transparency design principle: validation and variation. Hum Factors. https://doi.org/10.1177/0018720819887252

    Article  Google Scholar 

  131. Stanton NA (1995) Modelling human alarm initiated activities: implications for alarm system design. In: IEE colloquium on man-machine interfaces for instrumentation. IET, pp 8–1

    Google Scholar 

  132. Stanton NA, Baber C (1995) Alarm-initiated activities: an analysis of alarm handling by operators using text-based alarm systems in supervisory control systems. Ergonomics 38(11):2414–2431

    Article  Google Scholar 

  133. Stanton NA, Booth RT, Stammers RB (1992) Alarms in human supervisory control: a human factors perspective. Int J Comput Integr Manuf 5(2):81–93

    Article  Google Scholar 

  134. Steinemann JH (1966) Comparison of performance on analogous simulated and actual troubleshooting tasks. USN Personnel Research Activity Research Memorandum, SRM 67-1, vii, 12

    Google Scholar 

  135. Swaab RI, Postmes T, Neijens P, Kiers MH, Dumay ACM (2002) Multiparty negotiation support: the role of visualization’s influence on the development of shared mental models. J Manag Inf Syst 19(1):129–150

    Article  Google Scholar 

  136. Tan C, Kher VK (2012) A fault diagnosis system for industry pipe manufacturing process. Int Rev Mech Eng 6(6):1292–1296

    Google Scholar 

  137. Tan CF, Wahidin LS, Khalil SN, Tamaldin N, Hu J, Rauterberg GWM (2016) The application of expert system: a review of research and applications. ARPN J Eng Appl Sci 11(4):2448–2453

    Google Scholar 

  138. Turkoglu I, Arslan A, Ilkay E (2002) An expert system for diagnosis of the heart valve diseases. Expert Syst Appl 23(3):229–236

    Article  Google Scholar 

  139. Vicente KJ (1996) Review of alarm systems for nuclear power plants (Report No. CEL 96–04). Cognitive Engineering Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto

    Google Scholar 

  140. Vicente KJ (2002) Ecological interface design: progress and challenges. Hum Factors 44(1):62–78

    Article  Google Scholar 

  141. Vicente KJ, Rasmussen J (1992) Ecological interface design: theoretical foundations. IEEE Trans Syst Man Cybern 22(4):589–606

    Article  Google Scholar 

  142. Vicente KJ, Christoffersen K, Pereklita A (1995) Supporting operator problem solving through ecological interface design. IEEE Trans Syst Man Cybern 25(4):529–545

    Article  Google Scholar 

  143. Wang M, Cheng B, Chen J, Mercer N, Kirschner PA (2017) The use of web-based collaborative concept mapping to support group learning and interaction in an online environment. Internet High Educ 34:28–40

    Article  Google Scholar 

  144. Weber EU, Bockenholt U, Hilton DJ, Wallace B (1993) Determinants of diagnostic hypothesis generation: effects of information, base rates, and experience. J Exp Psychol Learn Mem Cogn 19(5):1151–1164

    Article  Google Scholar 

  145. Welk AK, Mayhorn CB (2015) All signals go: investigating how individual differences affect performance on a medical diagnosis task designed to parallel a signals intelligence analyst task. Symp Bootcamp Sci Secur 59(1):10–14

    Google Scholar 

  146. Wickens CD, Hollands JG, Banbury S, Parasuraman R (2013) Engineering psychology and human performance, 4th edn. Pearson Education, US

    Google Scholar 

  147. Wiegmann DA, Shappell SA (1997) Human factors analysis of postaccident data: applying theoretical taxonomies of human error. Int J Aviation Psychol 7:67–81

    Article  Google Scholar 

  148. Wiegmann DA, Rich A, Zhang H (2001) Automated diagnostic aids: the effects of aid reliability on users’ trust and reliance. Theor Issues Ergon Sci 2(4):352–367

    Article  Google Scholar 

  149. Wood PK (1983) Inquiring systems and problem structure: implications for cognitive development. Hum Dev 26(5):249–265

    Article  Google Scholar 

  150. Wu XJ, Li ZZ (2013) Secondary task method for workload measurement in alarm monitoring and identification tasks. In: International conference on cross-cultural design. Springer, Heidelberg, pp 346–354

    Google Scholar 

  151. Wu XJ, Li ZZ (2018) A review of alarm system design for advanced control rooms of nuclear power plants. Int J Hum-Comput Interaction 34(6):477–490

    Article  Google Scholar 

  152. Wu XJ, She MR, Li ZZ, Song F, Sang W (2017) Effects of integrated designs of alarm and process information on diagnosis performance in digital nuclear power plants. Ergonomics 60(12):1–14

    Article  Google Scholar 

  153. Yang HQ (2017) Effects of mental simulation training on diagnostic task team performance. Master thesis, Tsinghua University (In Chinese)

    Google Scholar 

  154. Yee DJ, Wiggins MW, Searle BJ (2020) Higher social cue utilisation improves communication, reduces perceived workload, and improves performance amongst ad hoc dyads in simulated rail control. Ergonomics 63(1):31–47

    Article  Google Scholar 

  155. Yuan XH, She MR, Li ZZ, Zhang YJ, Wu XJ (2016) Mutual awareness: enhanced by interface design and improving team performance in incident diagnosis under computerized working environment. Int J Ind Ergon 54:65–72

    Article  Google Scholar 

  156. Yusoff NAM, Salim SS (2015) A systematic review of shared visualisation to achieve common ground. J Vis Lang Comput 28:83–99

    Article  Google Scholar 

  157. Zhang YZ (2017) Team mental model similarity, quality and their relationship with diagnostic task performance. Master thesis, Tsinghua University (In Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizhong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lyu, X., She, M., Pan, D., Wu, X., Chen, K., Li, Z. (2023). Fault Diagnosis: Human Performance in the Digital and Automation Context. In: Duffy, V.G., Lehto, M., Yih, Y., Proctor, R.W. (eds) Human-Automation Interaction. Automation, Collaboration, & E-Services, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-031-10780-1_14

Download citation

Publish with us

Policies and ethics