Skip to main content

Path Planning of Robot Fleet in Upside-Down Configuration

  • Conference paper
  • First Online:
Advances in Italian Mechanism Science (IFToMM Italy 2022)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 122))

Included in the following conference series:

  • 1422 Accesses

Abstract

This article describes a new pick-and-place robotic system based on the use of upside-down robots: robots capable of climbing up walls or moving on ceilings in upside down. This configuration could offer an alternative to the use of delta robots. The fleet of robots is capable to pick some objects transported by a conveyor belt and download them in an unload area. Compared to delta robots, upside-down robots can move on a wider workspace and the configuration is scalable. A planning strategy for the upside-down robot fleet is presented. The identified algorithm has been simulated and its potential has been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karimi Eskandary, P., Belzile, B., Angeles, J.: Trajectory-planning and normalized-variable control for parallel pick-and-place robots. J. Mech. Robot. 11(3), 031001 (2019)

    Article  Google Scholar 

  2. Liu, X.-J., Han, G., Xie, F., Meng, Q., Zhang, S.: A novel parameter optimization method for the driving system of high-speed parallel robots. J. Mech. Robot. 10(4), 041010 (2018)

    Article  Google Scholar 

  3. Briot, S., Caro, S., Germain, C.: Design procedure for a fast and accurate parallel manipulator. J. Mech. Robot. 9(6), 061012 (2017)

    Article  Google Scholar 

  4. Larochelle, P.: Synthesis of planar mechanisms for pick and place tasks with guiding positions. J. Mech. Robot. 7(3), 031009 (2015)

    Article  Google Scholar 

  5. Li, T., Ma, S., Li, B., Wang, M., Li, Z., Wang, Y.: Development of an in-pipe robot with differential screw angles for curved pipes and vertical straight pipes. J. Mech. Robot. 9(5), 051014 (2017)

    Article  Google Scholar 

  6. Dharmawan, A.G., et al.: Design, modeling, and experimentation of a bio-inspired miniature climbing robot with bilayer dry adhesives. J. Mech. Robot. 11(2), 020902 (2019)

    Article  Google Scholar 

  7. Hong, D.W., Ingram, M., Lahr, D.: Whole skin locomotion inspired by amoeboid motility mechanisms. J. Mech. Robot. 1(1), 1–7 (2008)

    Google Scholar 

  8. Asbeck, A.T., Cutkosky, M.R.: Designing compliant spine mechanisms for climbing. J. Mech. Robot. 4(3), 031007 (2012)

    Article  Google Scholar 

  9. Silva, M.F., Machado, J.T., Tar, J.K.: A survey of technologies for climbing robots adhesion to surfaces. In: 2008 IEEE International Conference on Computational Cybernetics, pp. 127–132. IEEE (2008)

    Google Scholar 

  10. Cai, J., He, K., Fang, H., Chen, H., Hu, S., Zhou, W.: The design of permanent-magnetic wheeled wall-climbing robot. In: 2017 IEEE International Conference on Information and Automation (ICIA), pp. 604–608. IEEE (2017)

    Google Scholar 

  11. Mazumdar, A., Asada, H.H.: An underactuated, magnetic-foot robot for steel bridge inspection. J. Mech. Robot. 2(3), 031007 (2010)

    Article  Google Scholar 

  12. Howlader, M.O.F., Sattar, T.P.: Development of magnetic adhesion based climbing robot for non-destructive testing. In: 2015 7th Computer Science and Electronic Engineering Conference (CEEC), pp. 105–110. IEEE (2015)

    Google Scholar 

  13. Faruq Howlader, M.D.O., Sattar, T.P.: Design and optimization of permanent magnet based adhesion module for robots climbing on reinforced concrete surfaces. In: Bi, Y., Kapoor, S., Bhatia, R. (eds.) Intelligent Systems and Applications. SCI, vol. 650, pp. 153–171. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33386-1_8

    Chapter  Google Scholar 

  14. Zhang, Y., Dodd, T., Atallah, K., Lyne, I.: Design and optimization of magnetic wheel for wall and ceiling climbing robot. In: 2010 IEEE International Conference on Mechatronics and Automation, pp. 1393–1398. IEEE (2010)

    Google Scholar 

  15. Ishihara, H.: Basic study on wall climbing root with magnetic passive wheels, pp. 1964–1969 (2017)

    Google Scholar 

  16. Seriani, S., Scalera, L., Caruso, M., Gasparetto, A., Gallina, P.: Upside-down robots: modeling and experimental validation of magnetic-adhesion mobile systems. Robotics 8(2), 41 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the University of Trieste - University funding for scientific Research projects - FRA 2018, the LAMA FVG project and the PRIN 2017 project “SEDUCE” n. 2017TWRCNB from the Italian Ministry of University and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Seriani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Formigli, M., Bonin, L., Gallina, P., Seriani, S. (2022). Path Planning of Robot Fleet in Upside-Down Configuration. In: Niola, V., Gasparetto, A., Quaglia, G., Carbone, G. (eds) Advances in Italian Mechanism Science. IFToMM Italy 2022. Mechanisms and Machine Science, vol 122. Springer, Cham. https://doi.org/10.1007/978-3-031-10776-4_88

Download citation

Publish with us

Policies and ethics