Skip to main content

Low-Energy Coulomb Excitation and Nuclear Deformation

  • Chapter
  • First Online:
The Euroschool on Exotic Beams, Vol. VI

Part of the book series: Lecture Notes in Physics ((LNP,volume 1005))

  • 588 Accesses

Abstract

Coulomb excitation is one of the rare methods available to obtain information on static electromagnetic moments of short-lived excited nuclear states. In the scattering of two nuclei, the electromagnetic field that acts between them causes their excitation. The process selectively populates low-lying collective states and is therefore ideally suited to study nuclear collectivity. While these experiments used to be restricted to stable isotopes, the advent of new facilities providing intense beams of short-lived radioactive species has opened the possibility to apply this powerful technique to a much wider range of nuclei. In this chapter, we discuss observables that can be measured in a Coulomb-excitation experiment and their relation to nuclear-structure parameters and, in particular, the nuclear shape. Possible solutions for normalisation of the measured γ-ray intensities and requirements for particle-detection systems are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    While typically information from lifetime measurements is used in this type of analysis, no such data exist for 76Zn, and consequently a \(B(E2; 2^+_1 \to 0^+_1)\) value determined in an earlier Coulomb-excitation measurement [10] has been plotted in Fig. 2.3 for illustration purposes.

  2. 2.

    “Mixed-symmetry” states are a special category of collective states predicted in models that treat the proton and neutron fluids separately. First predicted by Faessler [60], they were extensively studied within the framework of the proton-neutron interacting boson model (IBM-2) [61]. The terminology “mixed symmetry” arises from the properties of the wave functions, which contain at least one pair of proton and neutron bosons that is antisymmetric under the exchange of the proton and neutron labels. A detailed discussion of properties of such states can be found in Ref. [62].

References

  1. T. Glasmacher, Lect. Notes Phys. 764, 27 (2009)

    Article  ADS  Google Scholar 

  2. D. Cline, Annu. Rev. Nucl. Part. Sci. 36, 683 (1986)

    Article  ADS  Google Scholar 

  3. M.P. Fewell, D.C. Kean, R.H. Spear, A.M. Baxter, J. Phys. G: Nucl. Phys. 3, L27 (1977)

    Article  ADS  Google Scholar 

  4. M.T. Esat, D.C. Kean, R.H. Spear, M.P. Fewell, A.M. Baxter, Phys. Lett. 72B, 49 (1977)

    Article  ADS  Google Scholar 

  5. M.T. Esat, M.P. Fewell, R.H. Spear, T.H. Zabel, A.M. Baxter, S. Hinds, Nucl. Phys. A362, 227 (1981)

    Article  ADS  Google Scholar 

  6. R.H. Spear, T.H. Zabel, M.T. Esat, A.M. Baxter, S. Hinds, Nucl. Phys. A378, 559 (1982)

    Article  ADS  Google Scholar 

  7. W.J. Vermeer, M.T. Esat, R.H. Spear, Nucl. Phys. A389, 185 (1982)

    Article  ADS  Google Scholar 

  8. W.J. Vermeer, M.T. Esat, J.A. Kuehner, R.H. Spear, A.M. Baster, S. Hinds, Phys. Lett. 122B, 23 (1983)

    Article  ADS  Google Scholar 

  9. K. Kumar, Phys. Rev. Lett. 28, 249 (1972)

    Article  ADS  Google Scholar 

  10. J. Van de Walle, F. Aksouh, F. Ames et al., Phys. Rev. Lett. 99, 142501 (2007)

    Article  ADS  Google Scholar 

  11. C. Sotty, M. Zielińska, G. Georgiev et al., Phys. Rev. Lett. 115, 172501 (2015)

    Article  ADS  Google Scholar 

  12. E. Clément, M. Zielińska, S. Péru et al., Phys. Rev. C 94, 054326 (2016)

    Article  ADS  Google Scholar 

  13. A. Görgen, W. Korten, J. Phys. G: Nucl. Part. Phys. 43, 024002 (2016)

    Article  ADS  Google Scholar 

  14. K. Alder, A. Winther, Electromagnetic Excitation (North-Holland, Amsterdam, 1975)

    MATH  Google Scholar 

  15. H. Frauenfelder, R. Steffen, in Alpha-, Beta and Gamma Spectroscopy, ed. by K. Siegbahn (North-Holland, Amsterdam, 1965)

    Google Scholar 

  16. F. Bosch, H. Spehl, Z. Phys. A280, 329 (1977)

    Article  ADS  Google Scholar 

  17. R. Brenn, H. Spehl, A. Weckherlin, H. Doubt, G. Van Middelkoop, Z. Phys. A281, 219 (1977)

    Article  ADS  Google Scholar 

  18. K. Krane, Nucl. Instr. Meth. 98, 205 (1972)

    Article  Google Scholar 

  19. H. Ower, The Coulex code CLX/DCY (unpublished)

    Google Scholar 

  20. T. Czosnyka, D. Cline, C.Y. Wu, Bull. Am. Phys. Soc. 28, 745 (1983). GOSIA User’s Manual. http://slcj.uw.edu.pl/en/gosia-code/

    Google Scholar 

  21. A. Winther, J. de Boer, A computer program for multiple coulomb excitation, in Coulomb Excitation ed. by K. Alder, A. Winther (Academic Press, New York/London, 1966)

    Google Scholar 

  22. D.C. Radford, C. Baktash, J.R. Beene et al., Nucl. Phys. A746, 83c (2004)

    Google Scholar 

  23. J.M. Allmond, D.C. Radford, C. Baktash et al., Phys. Rev. C 84, 061303(R) (2012)

    Google Scholar 

  24. J.M. Allmond, A.E. Stuchbery, A. Galindo-Uribarri et al., Phys. Rev. C 92, 041303(R) (2015)

    Google Scholar 

  25. R. Kumar, M. Saxena, P. Doornenbal et al., Phys. Rev. C 96, 054318 (2017)

    Article  ADS  Google Scholar 

  26. R. Kumar, P. Doornenbal, A. Jhingan et al., Phys. Rev. C 81, 024306 (2010)

    Article  ADS  Google Scholar 

  27. D. Rosiak, M. Seidlitz, P. Reiter et al., Phys. Rev. Lett. 121, 252501 (2018)

    Article  ADS  Google Scholar 

  28. A. Illana, M. Zielińska et al., submitted to Phys. Rev. C

    Google Scholar 

  29. K. Hadyńska-Klȩk, P.J. Napiorkowski, M. Zielińska et al., Phys. Rev. Lett. 117, 062501 (2016)

    Google Scholar 

  30. K. Hadyńska-Klȩk, P.J. Napiorkowski, M. Zielińska et al., Phys. Rev. C 97, 024326 (2018)

    Google Scholar 

  31. S. Akkoyun, A. Algora, B. Alikhani et al., Nucl. Instr. Meth. Phys. Res. A668, 26 (2012)

    Article  ADS  Google Scholar 

  32. M. Zielińska, K. Hadyńska-Klȩk, EPJ Web Conf. 178, 02014 (2018)

    Google Scholar 

  33. N. Amzal, P.A. Butler, D. Hawcroft et al., Nucl. Phys. A734, 465 (2004)

    Article  ADS  Google Scholar 

  34. J. de Boer, J. Eichler, Advances in Nuclear Physics (Plenum, New York, 1968)

    Google Scholar 

  35. M. Zielińska, L. Gaffney, K. Wrzosek-Lipska et al., Eur. Phys. J. A 52, 99 (2016)

    Google Scholar 

  36. A.M. Hurst, P.A. Butler, D.G. Jenkins et al., Phys. Rev. Lett. 98, 072501 (2007)

    Article  ADS  Google Scholar 

  37. J. Heese, K.P. Lieb, L. Lühmann et al., Z. Phys. A325, 45 (1986)

    ADS  Google Scholar 

  38. J. Ljungvall, A. Görgen, M. Girod et al., Phys. Rev. Lett. 100, 102502 (2008)

    Article  ADS  Google Scholar 

  39. K. Wrzosek-Lipska, L. Próchniak, M. Zielińska et al., Phys. Rev. C 86, 064305 (2012)

    Article  ADS  Google Scholar 

  40. J. Srebrny, D. Cline, Int. J. Mod. Phys. E 20, 422 (2011)

    Article  ADS  Google Scholar 

  41. W. Andrejtscheff, P. Petkov, Phys. Lett. B 329, 1 (1994)

    Google Scholar 

  42. M. Rocchini, K. Hadyńska-Klȩk, A. Nannini et al., Phys. Rev. C 103, 014311 (2021)

    Google Scholar 

  43. J. Henderson, Phys. Rev. C 102, 054306 (2020)

    Article  ADS  Google Scholar 

  44. T. Schmidt, K.L.G. Heyde, A. Blazhev, J. Jolie, Phys. Rev. C 94, 014302 (2017)

    Article  ADS  Google Scholar 

  45. A. Poves, F. Nowacki, Y. Alhassid, Phys. Rev. C 101, 054307 (2020)

    Article  ADS  Google Scholar 

  46. C.Y. Wu, D. Cline, T. Czosnyka et al., Nucl. Phys. A 607 178 (1996)

    Google Scholar 

  47. S. Paschalis, I.Y. Lee, A.O. Macchiavelli et al., Nucl. Instrum. Methods Phys. Res. A 709, 44 (2013)

    Google Scholar 

  48. C.Y. Wu, D. Cline, A. Hayes et al., Nucl. Instrum. Methods Phys. Res. A 814, 6 (2016)

    Google Scholar 

  49. A.D. Ayangeakaa, R.V.F. Janssens, C.Y. Wu et al., Phys. Lett. B 754, 254 (2016)

    Google Scholar 

  50. A.D. Ayangeakaa, R.V.F. Janssens, S. Zhu et al., Phys. Rev. Lett. 123, 102501 (2019)

    Article  ADS  Google Scholar 

  51. Y. Toh, C.J. Chiara, E.A. McCutchan et al., Phys. Rev. C 87, 041304(R) (2013)

    Google Scholar 

  52. E. Clément, A. Görgen, W. Korten et al., Phys. Rev. C 75, 054313 (2007)

    Article  ADS  Google Scholar 

  53. M. Bender, P. Bonche, P.-H. Heenen, Phys. Rev. C 74, 024312 (2006)

    Article  ADS  Google Scholar 

  54. M. Girod, J.-P. Delaroche, A. Görgen, A. Obertelli, Phys. Lett. B 676, 39 (2009)

    Google Scholar 

  55. T.R. Rodriguez, Phys. Rev. C 90, 034306 (2014)

    Article  ADS  Google Scholar 

  56. E. Clément, M. Zielińska, W. Korten et al., Phys. Rev. Lett. 116, 022701 (2016)

    Article  ADS  Google Scholar 

  57. B. Elbek, C.K. Bockelman, Phys. Rev. 105, 657 (1957)

    Article  ADS  Google Scholar 

  58. J.A. Brown, F.D. Becchetti, J.W. Jänecke et al., Phys. Rev. Lett. 66, 19 (1991)

    Article  Google Scholar 

  59. P.E. Garrett, M. Zielińska, A. Bergmaier et al., submitted to Phys. Rev. C.

    Google Scholar 

  60. A. Faessler, Nucl. Phys. A 85, 653 (1966)

    Google Scholar 

  61. A. Arima, T. Otsuka, F. Iachello, I. Talmi, Phys. Lett. B 66, 205 (1977)

    Google Scholar 

  62. N. Pietralla, P. von Brentano, A.F. Lisetskiy, Prog. Part. Nucl. Phys. 60, 225 (2008)

    Article  ADS  Google Scholar 

  63. L. Coquard, N. Pietralla, T. Ahn et al., Phys. Rev. C 80, 061304(R) (2009)

    Google Scholar 

  64. L. Coquard, N. Pietralla, G. Rainovski et al., Phys. Rev. C 82, 0234317 (2010)

    Article  Google Scholar 

  65. A. Goasduff, D. Mengoni, F. Recchi et al., Nucl. Instrum. Methods Phys. Res. A 1015, 165753 (2021)

    Google Scholar 

  66. M. Rocchini, K. Hadyńska-Klȩk, A. Nannini et al., Nucl. Instrum. Methods Phys. Res. A 971, 164030 (2020)

    Google Scholar 

  67. J. Mierzejewski, J. Srebrny, H. Mierzejewski et al., Nucl. Instrum. Methods Phys. Res. A 659, 84 (2011)

    Google Scholar 

  68. Y. Toh, M. Oshima, T. Hayakawa et al., Rev. Sci. Instrum. 73, 47 (2002)

    Article  ADS  Google Scholar 

  69. M. Zielińska, T. Czosnyka, J. Choiński et al., Nucl. Phys. A 712, 3 (2002)

    Google Scholar 

  70. A.N. Ostrowski, S. Cherubini, T. Davinson et al., Nucl. Instrum. Methods Phys. Res. A 480, 448 (2002)

    Google Scholar 

  71. A.M. Hurst, C.Y. Wu, J.A. Becker et al., Phys. Lett. B 674, 168 (2009)

    Google Scholar 

  72. E. Lunderberg, J. Belarge, P.C. Bender et al., Nucl. Instrum. Methods Phys. Res. A 885, 30 (2018)

    Google Scholar 

  73. S. Hellgartner, D. Mücher, K. Wimmer et al., submitted to Phys. Lett. B.

    Google Scholar 

  74. S. Hellgartner, Ph.D. Thesis, Technische Universität München, 2015

    Google Scholar 

  75. V. Bildstein, R. Gernhäuser, T. Kröll et al., Eur. Phys. J. A 48, 85 (2012)

    Google Scholar 

  76. M.W. Simon, D. Cline, C.Y. Wu et al., Nucl. Instrum. Methods Phys. Res. A 452, 205 (2000)

    Google Scholar 

  77. R.C. Pardo, G. Savard, R.V.F. Janssens, Nucl. Phys. News 26, 5 (2016)

    Article  Google Scholar 

  78. D.T. Doherty, J.M. Allmond, R.V.F. Janssens et al., Phys. Lett. B 766, 334 (2017)

    Google Scholar 

  79. J. Pakarinen, J. Ojala, P. Ruotsalainen et al., Eur. Phys. J. A 56, 149 (2020)

    Google Scholar 

  80. W. Rother, A. Dewald, G. Pascovici et al., Nucl. Instrum. Methods Phys. Res. A 654, 196 (2011)

    Google Scholar 

  81. T. Konstantinopoulos, M. Axiotis, A. Lagoyannis et al., HNPS Adv. Nucl. Phys. 19, 33 (2020)

    Article  Google Scholar 

  82. P.A. Butler, L.P. Gaffney, P. Spagnoletti et al., Phys. Rev. Lett. 124, 042503 (2020)

    Article  ADS  Google Scholar 

  83. N. Bree, K. Wrzosek-Lipska, A. Petts et al., Phys. Rev. Lett. 112, 162701 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank all those with whom I collaborated on topics related to this chapter, in particular (alphabetically) P.A. Butler, E. Clément, D.T. Doherty, L.P. Gaffney, P.E. Garrett, A. Görgen, K. Hadyńska-Klȩk, M. Komorowska, W. Korten, A. Nannini, P.J. Napiorkowski, M. Rocchini, J. Srebrny, P. Van Duppen, N. Warr and K. Wrzosek-Lipska.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magda Zielińska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zielińska, M. (2022). Low-Energy Coulomb Excitation and Nuclear Deformation. In: Lenzi, S.M., Cortina-Gil, D. (eds) The Euroschool on Exotic Beams, Vol. VI. Lecture Notes in Physics, vol 1005. Springer, Cham. https://doi.org/10.1007/978-3-031-10751-1_2

Download citation

Publish with us

Policies and ethics