Abstract
Coulomb excitation is one of the rare methods available to obtain information on static electromagnetic moments of short-lived excited nuclear states. In the scattering of two nuclei, the electromagnetic field that acts between them causes their excitation. The process selectively populates low-lying collective states and is therefore ideally suited to study nuclear collectivity. While these experiments used to be restricted to stable isotopes, the advent of new facilities providing intense beams of short-lived radioactive species has opened the possibility to apply this powerful technique to a much wider range of nuclei. In this chapter, we discuss observables that can be measured in a Coulomb-excitation experiment and their relation to nuclear-structure parameters and, in particular, the nuclear shape. Possible solutions for normalisation of the measured γ-ray intensities and requirements for particle-detection systems are also presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
“Mixed-symmetry” states are a special category of collective states predicted in models that treat the proton and neutron fluids separately. First predicted by Faessler [60], they were extensively studied within the framework of the proton-neutron interacting boson model (IBM-2) [61]. The terminology “mixed symmetry” arises from the properties of the wave functions, which contain at least one pair of proton and neutron bosons that is antisymmetric under the exchange of the proton and neutron labels. A detailed discussion of properties of such states can be found in Ref. [62].
References
T. Glasmacher, Lect. Notes Phys. 764, 27 (2009)
D. Cline, Annu. Rev. Nucl. Part. Sci. 36, 683 (1986)
M.P. Fewell, D.C. Kean, R.H. Spear, A.M. Baxter, J. Phys. G: Nucl. Phys. 3, L27 (1977)
M.T. Esat, D.C. Kean, R.H. Spear, M.P. Fewell, A.M. Baxter, Phys. Lett. 72B, 49 (1977)
M.T. Esat, M.P. Fewell, R.H. Spear, T.H. Zabel, A.M. Baxter, S. Hinds, Nucl. Phys. A362, 227 (1981)
R.H. Spear, T.H. Zabel, M.T. Esat, A.M. Baxter, S. Hinds, Nucl. Phys. A378, 559 (1982)
W.J. Vermeer, M.T. Esat, R.H. Spear, Nucl. Phys. A389, 185 (1982)
W.J. Vermeer, M.T. Esat, J.A. Kuehner, R.H. Spear, A.M. Baster, S. Hinds, Phys. Lett. 122B, 23 (1983)
K. Kumar, Phys. Rev. Lett. 28, 249 (1972)
J. Van de Walle, F. Aksouh, F. Ames et al., Phys. Rev. Lett. 99, 142501 (2007)
C. Sotty, M. Zielińska, G. Georgiev et al., Phys. Rev. Lett. 115, 172501 (2015)
E. Clément, M. Zielińska, S. Péru et al., Phys. Rev. C 94, 054326 (2016)
A. Görgen, W. Korten, J. Phys. G: Nucl. Part. Phys. 43, 024002 (2016)
K. Alder, A. Winther, Electromagnetic Excitation (North-Holland, Amsterdam, 1975)
H. Frauenfelder, R. Steffen, in Alpha-, Beta and Gamma Spectroscopy, ed. by K. Siegbahn (North-Holland, Amsterdam, 1965)
F. Bosch, H. Spehl, Z. Phys. A280, 329 (1977)
R. Brenn, H. Spehl, A. Weckherlin, H. Doubt, G. Van Middelkoop, Z. Phys. A281, 219 (1977)
K. Krane, Nucl. Instr. Meth. 98, 205 (1972)
H. Ower, The Coulex code CLX/DCY (unpublished)
T. Czosnyka, D. Cline, C.Y. Wu, Bull. Am. Phys. Soc. 28, 745 (1983). GOSIA User’s Manual. http://slcj.uw.edu.pl/en/gosia-code/
A. Winther, J. de Boer, A computer program for multiple coulomb excitation, in Coulomb Excitation ed. by K. Alder, A. Winther (Academic Press, New York/London, 1966)
D.C. Radford, C. Baktash, J.R. Beene et al., Nucl. Phys. A746, 83c (2004)
J.M. Allmond, D.C. Radford, C. Baktash et al., Phys. Rev. C 84, 061303(R) (2012)
J.M. Allmond, A.E. Stuchbery, A. Galindo-Uribarri et al., Phys. Rev. C 92, 041303(R) (2015)
R. Kumar, M. Saxena, P. Doornenbal et al., Phys. Rev. C 96, 054318 (2017)
R. Kumar, P. Doornenbal, A. Jhingan et al., Phys. Rev. C 81, 024306 (2010)
D. Rosiak, M. Seidlitz, P. Reiter et al., Phys. Rev. Lett. 121, 252501 (2018)
A. Illana, M. Zielińska et al., submitted to Phys. Rev. C
K. Hadyńska-Klȩk, P.J. Napiorkowski, M. Zielińska et al., Phys. Rev. Lett. 117, 062501 (2016)
K. Hadyńska-Klȩk, P.J. Napiorkowski, M. Zielińska et al., Phys. Rev. C 97, 024326 (2018)
S. Akkoyun, A. Algora, B. Alikhani et al., Nucl. Instr. Meth. Phys. Res. A668, 26 (2012)
M. Zielińska, K. Hadyńska-Klȩk, EPJ Web Conf. 178, 02014 (2018)
N. Amzal, P.A. Butler, D. Hawcroft et al., Nucl. Phys. A734, 465 (2004)
J. de Boer, J. Eichler, Advances in Nuclear Physics (Plenum, New York, 1968)
M. Zielińska, L. Gaffney, K. Wrzosek-Lipska et al., Eur. Phys. J. A 52, 99 (2016)
A.M. Hurst, P.A. Butler, D.G. Jenkins et al., Phys. Rev. Lett. 98, 072501 (2007)
J. Heese, K.P. Lieb, L. Lühmann et al., Z. Phys. A325, 45 (1986)
J. Ljungvall, A. Görgen, M. Girod et al., Phys. Rev. Lett. 100, 102502 (2008)
K. Wrzosek-Lipska, L. Próchniak, M. Zielińska et al., Phys. Rev. C 86, 064305 (2012)
J. Srebrny, D. Cline, Int. J. Mod. Phys. E 20, 422 (2011)
W. Andrejtscheff, P. Petkov, Phys. Lett. B 329, 1 (1994)
M. Rocchini, K. Hadyńska-Klȩk, A. Nannini et al., Phys. Rev. C 103, 014311 (2021)
J. Henderson, Phys. Rev. C 102, 054306 (2020)
T. Schmidt, K.L.G. Heyde, A. Blazhev, J. Jolie, Phys. Rev. C 94, 014302 (2017)
A. Poves, F. Nowacki, Y. Alhassid, Phys. Rev. C 101, 054307 (2020)
C.Y. Wu, D. Cline, T. Czosnyka et al., Nucl. Phys. A 607 178 (1996)
S. Paschalis, I.Y. Lee, A.O. Macchiavelli et al., Nucl. Instrum. Methods Phys. Res. A 709, 44 (2013)
C.Y. Wu, D. Cline, A. Hayes et al., Nucl. Instrum. Methods Phys. Res. A 814, 6 (2016)
A.D. Ayangeakaa, R.V.F. Janssens, C.Y. Wu et al., Phys. Lett. B 754, 254 (2016)
A.D. Ayangeakaa, R.V.F. Janssens, S. Zhu et al., Phys. Rev. Lett. 123, 102501 (2019)
Y. Toh, C.J. Chiara, E.A. McCutchan et al., Phys. Rev. C 87, 041304(R) (2013)
E. Clément, A. Görgen, W. Korten et al., Phys. Rev. C 75, 054313 (2007)
M. Bender, P. Bonche, P.-H. Heenen, Phys. Rev. C 74, 024312 (2006)
M. Girod, J.-P. Delaroche, A. Görgen, A. Obertelli, Phys. Lett. B 676, 39 (2009)
T.R. Rodriguez, Phys. Rev. C 90, 034306 (2014)
E. Clément, M. Zielińska, W. Korten et al., Phys. Rev. Lett. 116, 022701 (2016)
B. Elbek, C.K. Bockelman, Phys. Rev. 105, 657 (1957)
J.A. Brown, F.D. Becchetti, J.W. Jänecke et al., Phys. Rev. Lett. 66, 19 (1991)
P.E. Garrett, M. Zielińska, A. Bergmaier et al., submitted to Phys. Rev. C.
A. Faessler, Nucl. Phys. A 85, 653 (1966)
A. Arima, T. Otsuka, F. Iachello, I. Talmi, Phys. Lett. B 66, 205 (1977)
N. Pietralla, P. von Brentano, A.F. Lisetskiy, Prog. Part. Nucl. Phys. 60, 225 (2008)
L. Coquard, N. Pietralla, T. Ahn et al., Phys. Rev. C 80, 061304(R) (2009)
L. Coquard, N. Pietralla, G. Rainovski et al., Phys. Rev. C 82, 0234317 (2010)
A. Goasduff, D. Mengoni, F. Recchi et al., Nucl. Instrum. Methods Phys. Res. A 1015, 165753 (2021)
M. Rocchini, K. Hadyńska-Klȩk, A. Nannini et al., Nucl. Instrum. Methods Phys. Res. A 971, 164030 (2020)
J. Mierzejewski, J. Srebrny, H. Mierzejewski et al., Nucl. Instrum. Methods Phys. Res. A 659, 84 (2011)
Y. Toh, M. Oshima, T. Hayakawa et al., Rev. Sci. Instrum. 73, 47 (2002)
M. Zielińska, T. Czosnyka, J. Choiński et al., Nucl. Phys. A 712, 3 (2002)
A.N. Ostrowski, S. Cherubini, T. Davinson et al., Nucl. Instrum. Methods Phys. Res. A 480, 448 (2002)
A.M. Hurst, C.Y. Wu, J.A. Becker et al., Phys. Lett. B 674, 168 (2009)
E. Lunderberg, J. Belarge, P.C. Bender et al., Nucl. Instrum. Methods Phys. Res. A 885, 30 (2018)
S. Hellgartner, D. Mücher, K. Wimmer et al., submitted to Phys. Lett. B.
S. Hellgartner, Ph.D. Thesis, Technische Universität München, 2015
V. Bildstein, R. Gernhäuser, T. Kröll et al., Eur. Phys. J. A 48, 85 (2012)
M.W. Simon, D. Cline, C.Y. Wu et al., Nucl. Instrum. Methods Phys. Res. A 452, 205 (2000)
R.C. Pardo, G. Savard, R.V.F. Janssens, Nucl. Phys. News 26, 5 (2016)
D.T. Doherty, J.M. Allmond, R.V.F. Janssens et al., Phys. Lett. B 766, 334 (2017)
J. Pakarinen, J. Ojala, P. Ruotsalainen et al., Eur. Phys. J. A 56, 149 (2020)
W. Rother, A. Dewald, G. Pascovici et al., Nucl. Instrum. Methods Phys. Res. A 654, 196 (2011)
T. Konstantinopoulos, M. Axiotis, A. Lagoyannis et al., HNPS Adv. Nucl. Phys. 19, 33 (2020)
P.A. Butler, L.P. Gaffney, P. Spagnoletti et al., Phys. Rev. Lett. 124, 042503 (2020)
N. Bree, K. Wrzosek-Lipska, A. Petts et al., Phys. Rev. Lett. 112, 162701 (2014)
Acknowledgements
I would like to thank all those with whom I collaborated on topics related to this chapter, in particular (alphabetically) P.A. Butler, E. Clément, D.T. Doherty, L.P. Gaffney, P.E. Garrett, A. Görgen, K. Hadyńska-Klȩk, M. Komorowska, W. Korten, A. Nannini, P.J. Napiorkowski, M. Rocchini, J. Srebrny, P. Van Duppen, N. Warr and K. Wrzosek-Lipska.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Zielińska, M. (2022). Low-Energy Coulomb Excitation and Nuclear Deformation. In: Lenzi, S.M., Cortina-Gil, D. (eds) The Euroschool on Exotic Beams, Vol. VI. Lecture Notes in Physics, vol 1005. Springer, Cham. https://doi.org/10.1007/978-3-031-10751-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-10751-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10750-4
Online ISBN: 978-3-031-10751-1
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)