Skip to main content

Cisgenic Crops in Ecuador: Research and Perspectives

Part of the Concepts and Strategies in Plant Sciences book series (CSPS)

Abstract

Crops are constantly challenged by different (a)biotic stress including pests and diseases, or environmental factors such as cold or drought; that could lead to low yields, compromising the food security and incomes for producers. One of the main strategies to overcome this scenario is the development of resistant crops to pests and diseases or with increased nutrient content, that could produce high yield and profit. Different methodologies are applied to genetically improved crops, including conventional breeding, induced mutations, genetic engineering and new breeding techniques. The development of transgenic crops has been a success worldwide, due to an increasing number of events cultivated and the increasing area of adoption over the years for different crops, mainly maize and soybean. However, transgenic crops are constantly under sight due to concerns about human and environmental risks. Therefore, cisgenic crops are developed as an alternative to transgenic plants because no exogenous gene is used on them; even if it uses the same biotechnological tools to be developed. In this chapter, we will discuss the legal framework for cisgenic research and application in crops in Ecuador, showing different crops which are important for the food security or export market in the country.

Keywords

  • GMOs
  • Transgenic
  • Intragenic
  • Rice
  • Banana
  • Apple
  • Potato

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-10721-4_10
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-10721-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   179.99
Price excludes VAT (USA)

Notes

  1. 1.

    http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/Issues_papers_SP/La_agricultura_mundial.pdf.

  2. 2.

    https://bch.cbd.int/database/record.shtml?documentid=102283.

  3. 3.

    https://bch.cbd.int/about/countryprofile.shtml?country=ec.

  4. 4.

    https://bch.cbd.int/database/record.shtml?documentid=115230.

  5. 5.

    www.fao.org/faostat/es/#data/FBS.

References

  • Boddy L (2016) Pathogens of autotrophs. In SC Watkinson, L Boddy, NPBT-TF (eds) The Fungi Third Edition (pp 245–292). Boston: Academic Press

    Google Scholar 

  • Bradford KJ, Van Deynze A, Gutterson N, Parrott W, Steven S (2005) Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology, and genomics. Nat Biotechnol 23:439–444

    CrossRef  CAS  Google Scholar 

  • Cardi T (2016) Cisgenesis and genome editing: combining concepts and efforts for smarter use of genetic resources in crop breeding. Plant Breed 135:139–147

    CrossRef  CAS  Google Scholar 

  • Dale J, James A, Paul J-Y, Khanna H, Smith M, Peraza-Echeverria S, … Harding R (2017) Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat Commun 8(1):1496. https://doi.org/10.1038/s41467-017-01670-6

  • Delwaide AC, Nalley LL, Dixon BL, Danforth DM, Nayga RM Jr, Van Loo EJ, Verbeke W (2015) Revisiting GMOs: are there differences in European consumers’ acceptance and valuation for cisgenically vs transgenically bred rice? PLoS ONE 10(5):e0126060

    CrossRef  Google Scholar 

  • De Vetten N, Wolters AM, Raemakers K, Van der Meer I, Ter Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442

    CrossRef  Google Scholar 

  • Dita MA, Waalwijk C, Buddenhagen IW, Souza MT Jr, Kema GHJ (2010) A molecular diagnostic for tropical race 4 of the banana fusarium wilt pathogen. Plant Pathol 59(2):348–357. https://doi.org/10.1111/j.1365-3059.2009.02221.x

    CrossRef  CAS  Google Scholar 

  • Edenbrandt AK, House LA, Gao Z, Olmstead M, Gray D (2018) Consumer acceptance of cisgenic food and the impact of information and status quo. Food Qual Prefer 69:44–52

    CrossRef  Google Scholar 

  • EFSA Panel on Genetically Modified Organisms (GMO) (2012) Scientific opinion addressing the safety assessment of plants developed through cisgenesis and intragenesis. EFSA J 10

    Google Scholar 

  • Gatica-Arias (2020) The regulatory current status of plant breeding technologies in some Latin American and the Caribbean countries. Plant Cell Tiss Organ Cult 141:229–242

    Google Scholar 

  • Gheysen G, Custers R (2017) Why organic farming should embrace co-existence with Cisgenic late blight-resistant potato. Sustainability 9:172

    CrossRef  Google Scholar 

  • Haverkort AJ, Boonekamp PM, Hutten R et al (2016) Durable late blight resistance in potato through dynamic varieties obtained by Cisgenesis: scientific and societal advances in the DuRPh project. Potato Res 59:35–66

    CrossRef  CAS  Google Scholar 

  • Holme IB, Wendt T, Holm PB (2013) Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol J 11(4):395–407

    CrossRef  CAS  Google Scholar 

  • Hou H, Atlihan N, Lu Z-X (2014) New biotechnology enhances the application of cisgenesis in plant breeding. Front Plant Sci 5:389

    CrossRef  Google Scholar 

  • Jacobsen E, Nataraja KN (2008) Cisgenics-facilitating the second green revolution in India by improved traditional plant breeding. Curr Sci 94(1):1365–1366

    Google Scholar 

  • Jiménez M, Van der Veken I, Neirynck H, Rodriguez H, Ruiz O, Swennen R (2007) Organic banana production in Ecuador: its implications on black Sigatoka development and plant-soil nutritional status. Renew Agric Food Syst 22:297–306

    CrossRef  Google Scholar 

  • Jo KR, Kim CJ, Kim SJ et al (2014) Development of late blight resistant potatoes by cisgene stacking. BMC Biotechnol 14:50

    CrossRef  Google Scholar 

  • Johnson AAT, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E et al (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS ONE 6(9):e24476

    CrossRef  CAS  Google Scholar 

  • Kaur N, Shivani, Pandey A, Tiwari S (2016) Provitamin a enrichment for tackling malnutrition. In: Mohandas S., Ravishankar K. (eds) Banana: genomics and transgenic approaches for genetic improvement. Springer, Singapore

    Google Scholar 

  • Kishor PK (2020) Genetically modified crops: current status, prospects and challenges, (Vol. 2). Springer Nature

    Google Scholar 

  • Kost TD, Gessler C, Jänsch M, Flachowsky H, Patocchi A, Broggini GAL (2015) Development of the first Cisgenic apple with increased resistance to fire blight. PLoS ONE 10(12):e0143980

    CrossRef  Google Scholar 

  • Kotari P, Swarupa V, Ravishankar KV (2016) Genomics of biotic stress tolerance in Banana. In: Mohandas S, Ravishankar K (eds) Banana: genomics and transgenic approaches for genetic improvement. Springer, Singapore

    Google Scholar 

  • Krause SMB, Näther A, Ortiz Cortes V, Mullins E, Kessel GJT, Lotz LAP, Tebbe CC (2020) No tangible effects of field-grown Cisgenic potatoes on soil microbial communities. Front Bioeng Biotechnol 8:603145

    CrossRef  Google Scholar 

  • Lee SY, Kim EG, Park JR, Jang YH, Jan R, Ryu T, Kim KM (2021) Construction of risk assessment manual for genetically modified rice (Oryza sativa L.). J Crop Sci Biotechnol 24:221–228

    CrossRef  CAS  Google Scholar 

  • López J, Santos-Ordoñez E, González L (2020) Complementation of bananas conventional breeding programs through biotechnological genetic improvement. In: Chong P, Newman D, Steinmacher D (eds) Agricultural, forestry, and bioindustry biotechnology and biodiscovery. Springer, Cham

    Google Scholar 

  • Mainak B, Kumar SS, Ashutosh K, Rabiya P (2021) Cisgenics as a new horizon in crop improvement. Res J Biotechnol 16:193–201

    Google Scholar 

  • Marín D, Urioste S, Celi R, Castro M, Pérez P, Aguilar D, Labarta R, Andrade R (2021) Caracterización del sector arrocero en Ecuador 2014–2019: ¿Está cambiando el manejo del cultivo? Publicación CIAT No. 511. Cali (Colombia): Centro Internacional de Agricultura Tropical (CIAT); Fondo Latinoamericano para Arroz de Riego (FLAR); Ministerio de Agricultura y Ganadería (MAG) de Ecuador; Instituto Nacional de Investigaciones Agropecuarias (INIAP) de Ecuador, p 58

    Google Scholar 

  • Nalley L, Tsiboe F, Durand-Morat A, Shew A, Thoma G (2016) Economic and environmental impact of rice blast pathogen (Magnaporthe oryzae) alleviation in the United States. PLoS ONE 11(12):e0167295

    CrossRef  Google Scholar 

  • Paul JY, Khanna H, Kleidon J, Hoang P, Geijskes J, Daniells J, Zaplin E, Rosenberg Y, James A, Mlalazi B et al (2016) Golden bananas in the field: elevated fruit pro-vitamin A from the expression of a single banana transgene. Plant Biotechnol J 15(4):520–532

    CrossRef  Google Scholar 

  • Paul S, Ali N, Gayen D, Datta SK, Datta K (2012) Molecular breeding of Osfer2 gene to increase iron nutrition in rice grain. GM Crops & Food 3(4):310–316

    CrossRef  Google Scholar 

  • Pompili V, Dalla Costa L, Piazza S, Pindo M, Malnoy M (2020) Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system. Plant Biotechnol J 18(3):845–858

    CrossRef  CAS  Google Scholar 

  • Sánchez Timm E, Hidalgo Pardo L, Pacheco Coello R, Chávez Navarrete T, Navarrete Villegas O, Santos Ordóñez E (2016) Identification of differentially-expressed genes in response to Mycosphaerella fijiensis in the resistant musa accession ‘Calcutta-4’ using suppression subtractive hybridization. PLoS ONE 11(8):e0160083

    CrossRef  Google Scholar 

  • Santos E, Pacheco R, Villao L, Galarza L, Ochoa D, Jordán C, Flores J (2016a) Promoter analysis in banana. In Banana: genomics and transgenic approaches for genetic improvement (pp 157–179). Springer Singapore

    Google Scholar 

  • Santos E, Sánchez E, Hidalgo L, Chávez T, Villao L, Pacheco R, Flores J, Korneva S, Navarrete O (2016b) Advances in banana transformation through Agrobacterium tumefaciens in Ecuador: progress, challenges and perspectives. Acta Hortic 1114:197–202

    CrossRef  Google Scholar 

  • Santos E, Sánchez E, Hidalgo L, Chávez T, Villao L, Pacheco R, Navarrete O (2016c) Status and challenges of genetically modified crops and food in Ecuador. Acta Hortic 1110:229–235

    CrossRef  Google Scholar 

  • Schouten H, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants: international regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Rep 7:750–753

    CrossRef  CAS  Google Scholar 

  • Shew AM, Nalley LL (2015) Indian acceptance of Cisgenic rice: are all GMOs the same? Plant Biotechnol J 14(1):4–7

    CrossRef  Google Scholar 

  • Soda N, Verma L, Giri J (2018) CRISPR-Cas9 based plant genome editing: significance, opportunities, and recent advances. Plant Physiol Biochem 131:2–11

    CrossRef  CAS  Google Scholar 

  • Sowmya HD, Usharani TR, Sunisha C, Mohandas S (2016) Engineering resistance to Sigatoka. In: Mohandas S, Ravishankar K (eds) Banana: genomics and transgenic approaches for genetic improvement. Springer, Singapore

    Google Scholar 

  • Tamang T, Park J, Kakeshpour T, Valent B, Jia Y, Want G, Park S (2018) Development of selectable marker-free cisgenic rice plants expressing a blast resistance gene Pi9. World Con-Gress on in Vitro Biology 54:544

    Google Scholar 

  • Telem R, Wani S, Singh N, Nandini R, Sadhukhan R, Bhattacharya S, Mandal N (2013) Cisgenics—a sustainable approach for crop improvement. Curr Genomics 14:468–476

    CrossRef  CAS  Google Scholar 

  • Torres M, Santos-Ordóñez E (2020) Ecuador—modern biotechnology in Ecuador—development and legal framework. In: Chaurasia A, Hawksworth DL, Pessoa de Miranda M (eds) GMOs. Topics in biodiversity and conservation, vol 19. Springer, Cham

    Google Scholar 

  • Tripathi L, Tripathi JN, Kubiriba J (2016) Transgenic technologies for bacterial wilt resistance. In: Mohandas S, Ravishankar K (eds) Banana: genomics and transgenic approaches for genetic improvement. Springer, Singapore

    Google Scholar 

  • Usharani TR, Sowmya HD, Sunisha C, Mohandas S (2016) Engineering Resistance to Fusarium Wilt. In: Mohandas S., Ravishankar K. (eds) Banana: Genomics and Transgenic Approaches for Genetic Improvement. Springer, Singapore

    Google Scholar 

  • Vanblaere T, Szankowski I, Schaart J, Schouten H, Flachowsky H, Broggini GAL, Gessler C (2011) The development of a cisgenic apple plant. J Biotechnol 154(4):304–311

    CrossRef  CAS  Google Scholar 

  • Vargas A (2019) Análisis de la cadena agroproductiva de la manzana (Malus) en tres provincias de la sierra-centro zona 3. Tesis de grado. Escuela Superior Politécnica de Chimborazo

    Google Scholar 

  • Villao L, Flores J, Santos-Ordóñez E (2021) Genetic transformation of apical meristematic shoots in the banana cultivar ‘Williams.’ Bionatura 6:1462–1465

    CrossRef  Google Scholar 

  • Villao L, Sánchez E, Romero C, Galarza L, Flores J, Santos-Ordóñez E (2019) Activity characterization of the plantain promoter from the heavy metal-associated isoprenylated plant gene (MabHIPP) using the luciferase reporter gene. Plant Gene 19:100187

    CrossRef  CAS  Google Scholar 

  • Viteri P, León J, Soria N, Díaz H (1995). Manual del cultivo de manzano (Malus domestica B.) para los valles interandinos temperados del Ecuador. Quito, Ecuador: INIAP, Estación Experimental Santa Catalina, Programa de Fruticultura. (Manual no. 31)

    Google Scholar 

Download references

Acknowledgements

The author Efrén Santos received all the funding for research related to: the identification of candidate resistance genes for black sigatoka disease from the banana wild species ‘Calcutta 4’, and for establishing the platform of genetic engineering in banana from the Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación projects: PIC-08-0000300; and SENACYT-FWO-10-005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Santos, E., Sánchez, E., Villao, L., Chávez, T. (2023). Cisgenic Crops in Ecuador: Research and Perspectives. In: Chaurasia, A., Kole, C. (eds) Cisgenic Crops: Safety, Legal and Social Issues. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-10721-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10721-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10720-7

  • Online ISBN: 978-3-031-10721-4

  • eBook Packages: Social SciencesSocial Sciences (R0)