Skip to main content

Composition, Properties and Reactions of Coconut Water

  • Chapter
  • First Online:
Coconut Water
  • 435 Accesses

Abstract

Coconut water is an ancient, natural beverage and its popularity in the international market has been continuously increasing in recent years. Coconut water in its natural form is a refreshing and nutritious beverage, which is extensively consumed across the globe due to its beneficial properties to health. Various chemical components which contribute to its bioactivity are essential to the plant industry, biotechnology and biomedical fields. Large number of studies have been conducted on the bio chemical composition, properties and reactions of coconut water. This chapter provides extensive information generated on important constituents such as amino acids, antimicrobial peptides, aromatic compounds, electrolytes, enzymes, phytohormones, polyphenols, sugars and vitamins apart from properties and reactions (flavour, rancidity, turbidity, appearance/colour, pH and acidity). Although many reports on the chemical content of coconut water is already available, there may still be unknown constituents which contribute to its special biological effects. Information on the technological advancements made in the instrumental methods of analysis is furnished in a section. Thus, with the development of more advanced detection techniques, screening can be intensified to detect and identify novel compounds of medicinal values present in coconut water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu LF, Faria JAF (2007) Influencia da temperatura e do acido ascorbico sobre a esta-bilidade fisico-quimica e atividade enzima-tica da agua de coco (Cocos nucifera L.) acondicionada assepticamente, Cienc (Temperature and ascorbic acid effects in physico-chemical stability and enzymatic activity of coconut water (Cocos nucifera L.) aseptic filled). Food Sci Technol (Campinas) 27(2):226–232. https://doi.org/10.1590/S0101-20612007000200003

    Article  CAS  Google Scholar 

  • Adegoke A, Bamigbowu OE, George-Opuda IM, Edomwande P (2012) Electrolyte and glucose contents of ripe and unripe coconut liquid as source of oral rehydration solution. Intl J Appl Res in Natural Products 5(1):18–21

    Google Scholar 

  • Ajibogun OA, Oboma YI (2013) Biochemical composition of coconut water: Nigeria species. Intl J Med and Bio Med Sci 1(1):1–4

    Google Scholar 

  • Akpomie OO, Akponah E, Ehwarieme AD, Paul RE (2020) Antimicrobial activity of coconut water, oil and palm kernel oils extracted from coconut and palm kernel on some plasmid-mediated multi-drug resistant organisms associated with food spoilage. African J Microbiol Res 14(7):366–373. https://doi.org/10.5897/AJMR2020.9363

    Article  Google Scholar 

  • Al-azzawie HF, Umran A, Hyader NH (2013) Oxidative stress, antioxidant and DNA damage in a mercury exposure workers. British J Pharm and Toxicol 4(3):80–88. https://doi.org/10.19026/bjpt.4.5367

    Article  CAS  Google Scholar 

  • Alchoubassi G (2019) Développement de nouvelles approches qualitatives et quantitatives de spéciation des métaux impliqués dans les complexes de faibles poids moléculaires circulant dans les plantes (The development of new qualitative and quantitative metal speciation approaches for low molecular weight metals complexes in plants). Pour obtenir le grade de docteur De l’Université de Pau et des Pays de l’Adour Spécialité: chimie analytique de l’environnement. p 188

    Google Scholar 

  • Alchoubassi G, Kińska K, Bierla K, Lobinski R, Szpunar J (2021) Speciation of essential nutrient trace elements in coconut water. Food Chem 339. https://doi.org/10.1016/j.foodchem.2020.127680

  • Aleixo PC, Nóbrega JA, Dário SJ, Regina M (2000) Determinação direta de selênio em água de coco e em leite de coco utilizando espectrometria de absorção atômica com atomização eletrotérmica em forno de grafite (Direct determination of selenium in coconut water and coconut milk using graphite furnace atomic absorption spectrometry). Química Nova 23(3):310–312. https://doi.org/10.1590/S0100-40422000000300005

    Article  CAS  Google Scholar 

  • Aliberti NCM, da Silva RMS, Gut JAW, Tadini CC (2009) Thermal inactivation of polyphenol oxidase and peroxidase in green coconut (Cocos nucifera) water. Intl J Food Sci and Tech 44(12):2662–2668. https://doi.org/10.1111/j.1365-2621.2009.02100.x

    Article  CAS  Google Scholar 

  • Amasino R (2005) 1955: kinetin arrives. The 50th anniversary of a new plant hormone. Plant Physiol 138:1177–1184. https://doi.org/10.1104/pp.104.900160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anaya K, Podszun M, Franco OL, Gadelha CAA, Frank J (2020) The coconut water antimicrobial peptide CnAMP1 is taken up into intestinal cells but does not alter p-glycoprotein expression and activity. Plant Foods for Hum Nutri 75:396–403. https://doi.org/10.1007/s11130-020-00826-y

    Article  CAS  Google Scholar 

  • Anselme AL, Jean-Louis KK, Brice GJ (2018) Sucres simples dosés dans les sucres roux de L’eau de coco immature (Cocos nucifera L.) (Simple sugars dosed in coconut (Cocos nucifera L.) immature water). Intl J Progressive Sci Technol 11(2):76–80

    Google Scholar 

  • Anzaldo FE, Kintanar QL, Recto PM, Velasco RU, de la Cruz F, Lacalne A (1985) Coconut water as intravenous fluid. Philipp J Cocon Stud 10(1):31–43

    Google Scholar 

  • Appaiah P, Sunil L, Prasanth Kumar PK, Gopala Krishna AG (2015) Physicochemical characteristics and stability aspects of coconut water and kernel at different stages of maturity. J Food Sci Technol 52(8):5196–5203. https://doi.org/10.1007/s13197-014-1559-4

    Article  CAS  PubMed  Google Scholar 

  • Apshara SE, Arunachalam V, Jayabose C, Kumaran PM (2007) Evaluation of coconut hybrids for tender nut purpose. Indian J Hort 64(3):320–323

    Google Scholar 

  • Aragao WM, Isberner IV, Cruz EMO (2001a) Água-de-coco. Aracaju: Embrapa CPATC/Tabuleiros Costeiros, 2001. (Série Documentos 24) p 32

    Google Scholar 

  • Aragao WM, Cruz EMO, Helvecio JS (2001b) Caracterização morfológica do fruto e química da água de coco em cultivares de coqueiro anão (morphological characterization of the fruit and chemistry of the coconut water in cultivars of dwarf coconut trees). Agrotrópica 13(2):49–58

    Google Scholar 

  • Arditti J (2008) Micropropagation of orchids, 2nd edn. Blackwell Publishing, Oxford

    Google Scholar 

  • Aroucha EMM, Paiva CA, Alves Júnior AR, Araújo NO, Silva AC, Aroucha Filho JC (2015) Características físico-químicas de água-de-coco de diferentes cultivares em função do estádio de maturação (Physical and chemical characteristics of water-coconut different cultivars depending on the maturity stage). In: Congresso Brasileiro de Processamento mínimo e Pós-colheita de frutas, flores e hortaliças (CD ROM), Maio de 2015

    Google Scholar 

  • Arzeta-Ríos AJ, Ramírez DG, Trejo BR, Moncada MCY, Prada HZ (2020) Microwave heating effect on total phenolics and antioxidant activity of green and mature coconut water. Int J Food Eng 16(12). https://doi.org/10.1515/ijfe-2019-0378. 6 pages

  • Arzeta-Ríos AJ, Ramírez DG, Trejo BR, Moncada MCY, Prada H Z (2021) Inactivation kinetics of peroxidase by conventional and microwave processing of mature coconut water. The 2nd International Electronic Conference on Foods – "Future Foods and Food Technologies for a Sustainable World" in session on ‘Novel technologies and future food’,15–30 Oct 2021 https://doi.org/10.3390/Foods2021-11016 (registering DOI) 5 pages

  • Assa RRA (2007) Diagnostic de la cocoteraie paysanne du littoral ivoirien: étude physico- chimique, microbiologique et organoleptique de l’eau et de l’amande des noix de quatre cultivars du cocotier (Cocos nucifera L.) selon les stades de maturité. Thèse de Doctorat de l’Université de Cocody (Côte d’Ivoire). French. p 188

    Google Scholar 

  • Assa RR, Konan JL, Agbo N, Prades A, Nemlin J (2007) Caractéristiques physico-chimiques de l’eau des fruits de quatre cultivars de cocotier (Cocos nucifera L.) en Côte d’Ivoire (Physico-chemical characteristics of four coconut (Cocos nucifera L.) cultivars water in Cote d’Ivoire). Agron Afr 19(1):41–51

    Google Scholar 

  • Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA (2007) N-Acetylcysteine – a safe antidote for cysteine/glutathione deficiency. Current Opinion in Pharm 7(4):355–359

    Article  CAS  Google Scholar 

  • Attri BL, Sharma TVRS, Suryanarayana MA, Nair SA (1999) Evaluation of different coconut (Cocos nucifera L.) at tender nut stage. Indian Cocon J 30(1):8–10

    Google Scholar 

  • Awua AK, Doe ED, Agyare R (2011) Exploring the influence of sterilisation and storage on some physicochemical properties of coconut (Cocos nucifera L.) water. Bio Med Central Res Notes 4:451–454. http://www.biomedcentral.com/1756-0500/4/451. 9 pages

    Google Scholar 

  • Balasubramanian M, Boopathy R (2013) Purification and characterization of peroxidases from liquid endosperm of Cocos nucifera (L.): biotransformation. J Molecular Catalysis B: Enzymatic 90:33–42. https://doi.org/10.1016/j.molcatb.2013.01.009

    Article  CAS  Google Scholar 

  • Barciszewski (2007) Kinetin- a multiactive molecule. Int J Biol Macromol 40:182–192

    Article  CAS  PubMed  Google Scholar 

  • Benedetti LPS, dos Santos VB, Silva TA, Filho EB, Martins VL, Filho OF (2015) A digital image analysis method for quantification of sulfite in beverages. Anal Methods 7:7568–7573. https://doi.org/10.1039/c5ay01372k

    Article  CAS  Google Scholar 

  • Berleth T, Krogan NT, Scarpella E (2004) Auxin signals – turning genes on and turning cells around. Curr Opin Plant Bio 7:553–563

    Article  CAS  Google Scholar 

  • Bhagya D, Prema L, Rajamohan T (2010) Tender coconut water maintains the level of electrolytes and renin in fructose-fed hypertensive rats. Int J Biol Med Res 1(3):44–48

    Google Scholar 

  • Birosel DM, Ferro VO, Holcberg IB, Pitelli AC (1976) Isolation of proteins in coconut water. Rev Farm Bioquim Univ Sao Paulo 14:35–42

    CAS  PubMed  Google Scholar 

  • Biswaro LS, da Costa Sousa MG, Rezende TMB, Dias SC, Franco OL (2018) Antimicrobial peptides and nanotechnology, recent advances and challenges. Front Microbiol 9:1–14. https://doi.org/10.3389/fmicb.2018.00855

    Article  Google Scholar 

  • Biswas K, Mohanta YK, Kumar VB, Hashem A, Elsayed Fathi Abd_Allah, Mohanta D, Mohanta TK (2020) Nutritional assessment study and role of green silver nanoparticles in shelf-life of coconut endosperm to develop as functional food. Saudi J Bio Sci 27(1):1280–1288, doi: https://doi.org/10.1016/j.sjbs.2020.01.011

  • Blakeslee JJ, Peer WA, Murphy AS (2005) Auxin transport. Curr Opin Plant Bio 8:494–500

    Article  CAS  Google Scholar 

  • Brasil (2002) Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa no.39, de 29 de Maio de 2002. Aprova o Regulamento Técnico para fixação de identidade e qualidade da água de coco. Disponível em: (Ministry of Agriculture, Livestock and Supply, Normative Instruction no. 39, May 29, 2002. Approves the technical regulation for identity fixing and quality of coconut water, listed in Annex 1.39. Document from the Ministry of Agriculture, Livestock and Supply). Available at: http://www.agricultura.gov.br/sda/ddiv/pdf/in_39_2002.pdf/

  • Brown ME, Martin Pollak E, Christine JG, Seidman S, Chou YHW (1995) Calcium-ion–sensing cell-surface receptors. N Engl J Med 333:234–240

    Article  CAS  PubMed  Google Scholar 

  • Bustamante JO (2002) Nuclear pore ion channel activity in live syncytial nuclei. Pflügers Archiv – Eur J Physiol 444:286–290. https://doi.org/10.1007/s00424-002-0813-1

    Article  CAS  Google Scholar 

  • Campbell-Falck D, Falck TT, Tutuo TMN, Clem K (2000) The intravenous use of coconut water. Am J Emergency Med 18(1):108–111. https://doi.org/10.1016/s0735-6757(00)90062-7

    Article  CAS  Google Scholar 

  • Campos CF, Souza PE, Coelho JV, Gloria MBA (1996) Chemical composition, enzyme activity and effect of enzyme inactivation on flavor quality of green coconut water. J Food Processing and Preservation 20(6):487–500. https://doi.org/10.1111/j.1745-4549.1996.tb00761.x

    Article  CAS  Google Scholar 

  • Carlos LAJ, Cynthia TC, Misael CR (2018) Influence of the composition of coconut-based emulsions on the stability of the colloidal system. Advance J Food Sci and Tech 14(3):77–92., 2018. https://doi.org/10.19026/ajfst.14.5841

    Article  CAS  Google Scholar 

  • Casati S, Ottria R, Baldoli E, Lopez E, JAM M, Ciuffreda P (2011) Effects of cytokinins, cytokinin ribosides and their analogs on the viability of normal and neoplastic human cells. Anticancer Res 31:3401–3406

    CAS  PubMed  Google Scholar 

  • Cavalcante TABB, Funcia ES, Gut JAW (2021) Inactivation of polyphenol oxidase by microwave and conventional heating: investigation of thermal and non-thermal effects of focused microwaves. Food Chem 340:127911. https://doi.org/10.1016/j.foodchem.2020.127911

    Article  CAS  Google Scholar 

  • Chang C, Wu RT (2011) Quantification of (+)-catechin and (−)-epicatechin in coconut water by LC–MS. Food Chem 126:710–717. https://doi.org/10.1016/j.foodchem.2010.11.034

    Article  CAS  Google Scholar 

  • Chavalittamrong B, Pidatcha P, Thavisri U (1982) Electrolytes, sugar, calories, osmolarity and pH of beverages and coconut water. Southeast Asian J Trop Med Public Health 13(3):427–431

    CAS  PubMed  Google Scholar 

  • Chen W, Zhang G, Chen W, Zhongand Q, Chen H (2018) Metabolomic profiling of matured coconut water during post-harvest storage revealed discrimination and distinct changes in metabolites. RSC Adv 8:31396–31405. https://doi.org/10.1039/c8ra04213f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chidambaram S, Singaraja C, Prasanna MV, Ganesan M, Sundararajan M (2013) Chemistry of tender coconut water from the Cuddalore coastal region in Tamil Nadu, India. Natural Resources Res 22(2):91–101. https://doi.org/10.1007/s11053-013-9203-y

    Article  CAS  Google Scholar 

  • Chikkasubbanna V, Jayaprasad KV, Subbaiah T, Poonacha NR (1990) Effect of maturity on chemical composition of tender coconut (Var. Arisekere Tall) water. Indian Cocon J 20(12):10–13

    Google Scholar 

  • Child R (1964) Minor and domestic coconut products. In: Coconuts. Trop Agric series, Longmans. Green and Co., London, pp 196–205

    Google Scholar 

  • Child R, Nathanael WRN (1950) Changes in the sugar composition of coconut water during maturation and germination. J Sci Food Agric 1:326–329

    Article  CAS  Google Scholar 

  • Choi BH, Kim W, Wang QC, Kim DC, Tan SN, Yong JWH, Kim KT, Yoon HS (2008) Kinetin riboside preferentially induces apoptosis by modulating Bcl-2 family proteins and caspase-3 in cancer cells. Cancer Lett 261(1):37–45. https://doi.org/10.1016/j.canlet.2007.11.014

    Article  CAS  PubMed  Google Scholar 

  • Choi SJ, Jeong CH, Choi SG, Chun JY, Kim YJ, Lee JM, Shin DH, Heo HJ (2009) Zeatin prevents amyloid beta induced neurotoxic and scopolamine-induced cognitive deficits. J Med Food 12(2):271–277. https://doi.org/10.1089/jmf.2007.0678

    Article  CAS  PubMed  Google Scholar 

  • Chuku LC, Kalagbor GI (2014) Protein and mineral element content of coconut (Cocos nucifera) water from different species. Am J Advanced Drug Delivery 2(4):451–453

    Google Scholar 

  • Chumbimuni-Torres KY, Kubota LT (2006) Simultaneous determination of calcium and potassium in coconut water by a flow injection method with tubular potentiometric sensors. J Food Composition Analysis 19(2-3):225–230. https://doi.org/10.1016/j.jfca.2005.09.006

    Article  CAS  Google Scholar 

  • Clark R (1994) Kinetin delays the onset of ageing characteristics in human fibroblasts. Biochem Biophys Res Commun 201:665–672

    Article  PubMed  Google Scholar 

  • Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM (2013) Acetylcholin-esterase inhibitors: pharm and toxicology. Curr Neuropharmacol 11(3):315–335. https://doi.org/10.2174/1570159X11311030006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper ES (1986) Coconut water. Lancet 2(8501):281. https://doi.org/10.1016/S0140-6736(86)92094-5

    Article  CAS  PubMed  Google Scholar 

  • Costa JMC, Alves MCS, Clemente E, Felipe EMF (2006) Características físico-químicas e minerais de água de coco de frutos da variedade Anã Amarelo em diferentes períodos de maturação. Acta Scientiarum Agro 28(2):173–177. https://doi.org/10.4025/actasciagron.v28i2.1029

    Article  Google Scholar 

  • Costa HB, Souza LM, Soprani LC, Oliveira BG, Ogawa EM, Korres AMN, Ventura JA, Romão W (2015) Monitoring the physicochemical degradation of coconut water using ESI-FT-ICR MS. Food Chem 174:39–146. https://doi.org/10.1016/j.foodchem.2014.10.154

    Article  CAS  Google Scholar 

  • Costanigro M, Appleby C, Menke SD (2014) The wine headache: consumer perceptions of sulfites and willingness to pay for non-sulfited wines. Food Qual and Preference 31(1):81–89. https://doi.org/10.1016/j.foodqual.2013.08.002

    Article  Google Scholar 

  • Cruz J, Guzmán FC, Fernández-Lafuente R, Torres R (2014) Antimicrobial peptides: promising compounds against pathogenic microorganisms. Curr Med Chem 21(20):2299–2232. https://doi.org/10.2174/0929867321666140217110155

    Article  CAS  PubMed  Google Scholar 

  • Cueno ME, Laude RP (2010) Molecular characterization of free nucleic acids in coconut water. The Philipp J Sci 139(1):35–41

    Google Scholar 

  • Cutter V, Freeman B (1954) Development of the syncytial endosperm of Cocos nucifera. Nature 173(4409):827–828. https://doi.org/10.1038/173827b0

    Article  Google Scholar 

  • Cutter VM Jr, Wilson KS, Dubé GR (1952) The isolation of living nuclei from the endosperm of Cocos nucifera. Sci 115(2977):58–59, doi: https://doi.org/10.1126/Sci.115.2977.58

  • Cutter VM Jr, Wilson KS, Dube GR (1955) Nuclear behavior and cell formation in the developing endosperm of Cocos nucifera. Am J Bot 42(2):109–115. https://doi.org/10.2307/2438458

    Article  Google Scholar 

  • da Fonseca AM, Monte FJQ, de Oliveira MCF, de Mattos MC, Cordell R, Braz-Fliho GA, TLG L (2009a) Coconut water (Cocos nucifera L.) – a new biocatalyst system for organic synthesis. J Molecular Catalysis B: Enzymatic 57(1-4):78–82. https://doi.org/10.1016/j.molcatb.2008.06.022

    Article  CAS  Google Scholar 

  • da Fonseca AM, Bizerra AMC, da Souza JSN, Monte FJQ, de Oliveira MCF, de Mattos MC, Cordell GA, Braz-Filho R, Lemos TLG (2009b) Constituents and antioxidant activity of two varieties of coconut water (Cocos nucifera L.). Rev Bras Farmacogn 19(1):193–198. https://doi.org/10.1590/S0102-695X2009000200002

    Article  Google Scholar 

  • da Silva RA, Cavalcante LF, de Holanda JS, Pereira WE, de Moura MF, Neto MF (2006) Qualidade de frutos do coqueiro-anão verde fertirrigado com nitrogênio e potássio (fruits quality of green dwarf coconut fertirrigation with nitrogen and potassium). Rev Bras Frutic 28(2):310–313. https://doi.org/10.1590/S0100-29452006000200035

    Article  Google Scholar 

  • da Silva DLV, Alves RE, de Figueiredo RW, Maciel VT, de Farias JM, de Aquino ARL (2009) Características físicas, físico-quími-cas e sensoriais da água de frutos de coqueiro anão verde oriundo de produção convencional e orgânica (Physical, physical-chemical and sensorial characteristics of coconut water from green-dwarfed coconut palm from conventional and organic production). Ciênc Agrotecnol 33(4):1079–1084. https://doi.org/10.1590/S1413-70542009000400019

    Article  Google Scholar 

  • da Silva KG, da Costa FB, Brasil YL, da Silva AGF, Pordeus GO, Medeiros VM, do Nascimento AM, da Silva JL, da Silva MS, de Queiroga AXM, Sales GMB (2018) Water and pulp quality of green coconut produced with mulching and irrigation frequency. J Exp Agric Intl 26(3):1–10. https://doi.org/10.9734/JEAI/2018/44284

    Article  Google Scholar 

  • Daberka RW, McKenzie AD, Lacroix GMA (1987) Dietary intakes of lead, cadmium, arsenic and fluoride by Canadian adults: a 24-hour duplicate diet study. Food Addit Contam 4:89–102

    Article  Google Scholar 

  • Dai J, Mummper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10):7313–7352. https://doi.org/10.3390/molecules15107313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damar S (2006) Processing of coconut water with high pressure carbon dioxide Tech A PhD dissertation presented to the graduate school of the University of Florida in partial fulfilment of the requirements for the degree of Doctor of Philosophy, University of Florida, Gainesville FL Available at http://ufdcimages.uflib.ufl.edu/UF/E0/01/55/41/00001/damar_s.pdf. p 160

  • de Sousa RA, Silva CJJ, Baccan N, Cadore S (2005a) Determination of metals in bottled coconut water using an inductively coupled plasma optical emission spectrometer. J Food Compos Anal 18(5):399–408. https://doi.org/10.1016/j.jfca.2004.02.012

    Article  CAS  Google Scholar 

  • de Sousa RA, Baccan N, Cadore S (2005b) Determination of metals in Brazilian coconut water using an inductively coupled plasma optical emission spectrometer. J Braz Chem Soc 16(3):540–544. https://doi.org/10.1590/S0103-50532005000400008

    Article  Google Scholar 

  • DebMandal M, Mandal S (2011) Coconut (Cocos nucifera L.: Arecaceae): in health promotion and disease prevention. Asian Pac J Trop Med 4:241–247. https://doi.org/10.1016/S1995-7645(11)60078-3

    Article  PubMed  Google Scholar 

  • del Rosario JE, Bergonia HA, Flavier ME, Samonte JL, Mendoza EMT (1984) Chromatographic analysis of carbohydrates in coconut water. Trans the Natl Acad Sci Technol 6:127–151

    Google Scholar 

  • Depeint FB, Shangari WR, Mehta R, O’Brien PJ (2006) Mitochondrial function and toxicity: role of B – vitamins on the one-carbon transfer pathways. Chem Biol Interact 163:113–132

    Article  CAS  PubMed  Google Scholar 

  • Devakumar K, Prabakaran J (2009) Syncytial nuclei formation and development in coconut fruits. Indian J Hort 66(1):109–119

    Google Scholar 

  • Dhamodaran S, Ratnambal MJ, Chempakam B, Pillai RV, Viraktamath BC (1993) Evaluation of tender nut water in coconut cultivars. In: Nair MK, Khan HH, Gopalasundaram P, Bhaskara Rao EVV (eds) Advances in coconut research and devloment. ISOCRAD II Oxford & IBH publishing Co. Pvt. Ltd., New Delhi, pp 123–128

    Google Scholar 

  • Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jurgens G, Estelle M (2005) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9(1):109–119. https://doi.org/10.1016/j.devcel.2005.05.014

    Article  CAS  PubMed  Google Scholar 

  • Dhillon KS, Dhillon SK (1984) Zinc absorption by alkaline soil. J Indian Soc Soil Sci 32:250–254

    CAS  Google Scholar 

  • Dignan C, Burlingame B, Kumar S, Aalbersberg W (2004) The Pacific Islands food composition tables, 2nd edn. FAO, Rome, pp 153

    Google Scholar 

  • Duarte ACP, Coelho MAZ, Leite SGF (2002) Identificación de peroxidasa y tirosinasa en jugo de coco verde identificación de peroxidasa e tirosinasa en xugo de coco verde. (Identification of peroxidase and tyrosinase in green coconut water). Cienc Tecnol Aliment 3(5):266–270. https://doi.org/10.1080/11358120209487737

    Article  CAS  Google Scholar 

  • Dufosse L, Latrasse A, Spinnler HE (1994) Importance des lactones dans les aromes alimentaires: structure, distribution, proprieties sensorielles et biosynth’ese (Importance of lactones in food flavours: structure, distribution, sensory properties and biosynthesis). Sci Alim 14:17–50

    CAS  Google Scholar 

  • Dupaigne P (1971) Un jus de fruit peu ordinaire: l’eau de coco. Fruits 26(9):625–627

    Google Scholar 

  • EFSA (European Food Safety Authority) (2005) Opinion of the scientific panel on dietetic products, Nutri and allergies on a request from the commission related to the tolerable upper intake level of fluoride. (Request No. EFSA-Q-2003-018) (adopted on 22 February 2005). The EFSA J 192:1–65. https://doi.org/10.2903/j.efsa.2005.2192

    Article  Google Scholar 

  • Ekasari CP, Widyarti S (2019) The physicochemical properties comparison of the natural coconut water and the packaging coconut water. IOP Conf Series: Earth and Environal Sci 391:9 pages. https://doi.org/10.1088/1755-1315/391/1/012021

  • Enonuya OMD (1988) High performance liquid chromatographic analysis of nut water syrup fractions from two varieties of Nigerian coconuts (Cocos nucifera L.). Niger J Palms Oil Seeds 9:48–58

    Google Scholar 

  • FAO (2007) Expert committee of food additives sulfur dioxide, http://www.inchem.org/documents/jecfa/jeceval/jec_2215.htm

  • Fernando WMADB, Martins IJ, Goozee KG, Brennan CS, Jayasena V, Martins RN (2015) The role of dietary coconut for the prevention and treatment of Alzheimer’s disease: potential mechanisms of action. British J Nutri 114(1):1–14. https://doi.org/10.1017/S0007114515001452

    Article  CAS  Google Scholar 

  • Fowoyo P, Alamu J (2018) Nutritional composition and antimicrobial acidity of coconut water against selected gastrointestinal pathogens. Intl J Micro Biol and Application 5(1):1–8. http://www.openScionline.com/journal/ijma

    Google Scholar 

  • Ganesamurthy K, Nataraja C, Vaithilingam R, Giridharan S, Khan HH (2002) Screening of coconut germplasm for tender coconut water. Indian Cocon J 30:31–34

    Google Scholar 

  • Garcia B, Masa DB, Rodriguez MJ, Rolle R (2007) Control of pink discoloration in coconut water. CORD 23(2):67–83. https://doi.org/10.37833/cord.v23i2.168

    Article  Google Scholar 

  • Ge L, Yong JW, Tan SN, Yang XH, Ong ES (2004) Analysis of some cytokinins in coconut (Cocos nucifera L.) water by micellar electrokinetic capillary chromatography after solid-phase extraction. J Chromatogr A 1048(1):119–126. https://doi.org/10.1016/j.chroma.2004.07.031

    Article  CAS  PubMed  Google Scholar 

  • Ge L, Yong JWH, Goh NK, Chia LS, Tan SN, Ong ES (2005a) Identification of kinetin and kinetin riboside in coconut (Cocos nucifera L.) water using a combined approach of liquid chromatography-tandem mass spectrometry, high performance liquid chromatography and capillary electrophoresis. J Chromatogr B 829:26–34. https://doi.org/10.1016/j.jchromb.2005.09.026

    Article  CAS  Google Scholar 

  • Ge L, Yong JW, Tan SN, Yang XH, Ong ES (2005b) Analysis of positional isomers of hydroxylated aromatic cytokinins by micellar electrokinetic chromatography. Electrophoresis 26(9):1768–1777. https://doi.org/10.1002/elps.200410234

    Article  CAS  PubMed  Google Scholar 

  • Ge L, Yong JWH, Tan SN, Ong ES (2006a) Determination of cytokinins in coconut (Cocos nucifera L.) water using capillary zone electrophoresis-tandem mass spectrometry. Electrophoresis 27(11):2171–2181. https://doi.org/10.1002/elps.200500465

    Article  CAS  PubMed  Google Scholar 

  • Ge L, Yong JWH, Tan SN, Yang XH, Ong ES (2006b) Analysis of cytokinin nucleotides in coconut (Cocos nucifera L.) water using capillary zone electrophoresis-tandem mass spectrometry after solid-phase extraction. J Chromatogr A 1133(1-2):322–331. https://doi.org/10.1016/j.chroma.2006.08.027

    Article  CAS  PubMed  Google Scholar 

  • Ge L, Peh CYC, Yong JWH, Tan SN, Hua L, Ong ES (2007) Analyses of gibberellins by capillary electrophoresis-mass spectrometry combined with solid-phase extraction. J Chromatogr A 1159:242–249. https://doi.org/10.1016/j.chroma.2007.05.041

    Article  CAS  PubMed  Google Scholar 

  • Ge L, Yong JWH, Tan SN, Hua L, Ong ES (2008) Analyses of gibberellins in coconut (Cocos nucifera L.) water by partial filling micellar electrokinetic chromatography mass spectrometry with reversal of electroosmotic flow. Electrophoresis 29(10):2126–2134. https://doi.org/10.1016/j.chroma.2006.08.027

    Article  CAS  PubMed  Google Scholar 

  • Ghosh DK, Bandopadhyay A (2015) Performance of some coconut cultivars and hybrids in alluvial plains of West Bengal. J Crop and Weed 11(1):197–199

    Google Scholar 

  • Goh YI, Koren G (2008) Folic acid in pregnancy and fetal outcomes. J Obstet Gynaecol 28:3–13

    Article  CAS  PubMed  Google Scholar 

  • Gomes B, Augusto MT, Felício MR, Hollmann A, Franco OL, Gonçalves S, Santos NC (2018) Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol Adv 36:415–429. https://doi.org/10.1016/j.biotechadv.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  • Gopikrishna V, Thomas T, Kandaswamy D (2008) A quantitative analysis of coconut water: a new storage media for avulsed teeth. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology 105(2):61–65. https://doi.org/10.1016/j.tripleo.2007.08.003

    Article  Google Scholar 

  • Halim HH, Dee EW, Dek MSP, Hamid AA, Ngalim A, Saari N, Jaafar AH (2018) Ergogenic attributes of young and mature coconut (Cocos nucifera l.) water based on physical properties, sugars and electrolytes contents. Intl J Food Prop 21(1):2378–2389. https://doi.org/10.1080/10942912.2018.1522329

    Article  CAS  Google Scholar 

  • Heo HJ, Hong SC, Cho HY, Hong B, Kim HK, Kim E, Shin DH (2002) Inhibitory effect of zeatin, isolated from Fatoua villosa, on acetylcholinesterase activity from PC12 cells. Mol Cells 13(1):113–117

    CAS  PubMed  Google Scholar 

  • Hikmawandari, Ratman PN (2019) Penentuan kadar kalium (k) pada air kelapa hijau (Cocos viridis) di daerah dolo dan labuan menggunakan spektrofotometri (determination of potassium (K) in green coconut (Cocos viridis) from dolo and labuan areas using spectrophotometry). J Akademika Kim 8(1):34–37. https://doi.org/10.22487/j24775185.2019.v8.i1.2350

    Article  Google Scholar 

  • Hirose N, Takei K, Kuroha T, Nobusada TK, Hayashi H, Sakakibara H (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59(1):75–83. https://doi.org/10.1093/jxb/erm157

    Article  CAS  PubMed  Google Scholar 

  • Hosseini SS, Mahvi AH (2019) Removal of fluoride from drinking water by freezing tech. Fluoride 52(3 Pt 1):231–247

    CAS  Google Scholar 

  • Hosseini SS, Mahyi AH (2021) Nitrate content of coconut water and its possible risk assessment. J Food Processing and Preservation. https://doi.org/10.1111/jfpp.15536

  • Hosseini SS, Mahvi AH, Tsunoda M (2012) Fluoride content of coconut water and its risk assessment. Fluoride 52(4):553–561

    Google Scholar 

  • Hosseini SS, Pasalari H, Yousefi N, Mahvi AH (2019) Eggshell modified with alum as low-cost sorbent for the removal of fluoride from aquatic environments: isotherm and kinetic studies. Desalin Water Treat 146:326–332

    Article  Google Scholar 

  • Hsiao G, Shen MY, Lin KH, Chou CY, Tzu NH, Lin CH, Chou DS, Chen TF, Sheu JR (2003) Inhibitory activity of kinetin on free radicle formation of activated platelets in vitro and on thrombus formation in vivo. Eur J Pharm 465(3):281–287. https://doi.org/10.1016/s0014-2999(03)01528-0

    Article  CAS  Google Scholar 

  • Huan L, Takamura T, Tanaka M (2004) Callus formation and plant regeneration from callus through somatic embryo structures in cymbidium orchid. Plant Sci 166:1443–1449. https://doi.org/10.1016/j.plantsci.2004.01.023

    Article  CAS  Google Scholar 

  • Ibe CC, Osuji CN, Nwabueze EU, Ahaotu EO (2013) Chemical composition of coconut water. Inter J Agri Biosci 2(5):185–187

    Google Scholar 

  • Jackson JC, Gordon A, Wizzard G, McCook K, Rolle R (2004) Changes in chemical composition of coconut (Cocos nucifera) water during maturation of the fruit. J The Sci Food and Agric 84(9):1049–1052. https://doi.org/10.1002/jsfa.1783

    Article  CAS  Google Scholar 

  • Jakubowska A, Kowalczyk S (2005) A specific enzyme hydrolyzing 6-O(4-O)-indole-3-ylacetyl-β-d glucose in immature kernels of Zea mays. J Plant Physiol 162:207–213

    Article  CAS  PubMed  Google Scholar 

  • Jaroonchon N, Imsabai W, Krisana (2015) Comparison of RNA extraction methods in Thai aromatic coconut water. Songklanakarin J Sci Technol 37(5):533–537

    Google Scholar 

  • Jaroonchon N, Krisanappok K, Imsabi W (2017) The development of 2 acetyl-1-pyrroline (2-AP) in Thai aromatic coconut. Songklanakarin J Sci Tech 39(2):179–183. https://doi.org/10.14456/sjst-psu.2017.21

    Article  CAS  Google Scholar 

  • Jayakumar K, Rajasekaran S, Nagarajan M, Vijayarengan P (2015) Bioactive enzyme activity and medicinal properties of tender coconut (Cocos nucifera L.). Intl J Modern Biochem 4(1):10–14

    CAS  Google Scholar 

  • Jayalekshmy A, Arumughan C, Narayanan CS, Mathew AG (1986) Changes in the chemical composition of coconut water during maturation. J Food Sci Technol 23(4):203–207

    CAS  Google Scholar 

  • Jayalekshmy A, Arumughan C, Narayanan CS, Mathew AG (1988) Modification de la composition chimique de l’eau de coco pendant la maturation. Oléagineux French 43:409–414

    CAS  Google Scholar 

  • Jean WH, Yong LG, Yan FN, Swee NT (2009) The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules 14:5144–5164. https://doi.org/10.3390/molecules14125144

    Article  CAS  Google Scholar 

  • Jeganathan M (1990) Studies on potassium magnesium interaction in coconut (Cocos nucifera). COCOS 8:1–12

    Article  Google Scholar 

  • Jeganathan M (1992) Nut water analysis as a diagnostic tool in coconut nutrition studies. Communications in Soil Sci and Plant Analysis 23(17–20):2667–2686

    Article  CAS  Google Scholar 

  • Jirovetz L, Buchbauer G, Ngassoum MB (2003) Solid-phase-microextraction-headspace aroma compounds of coconut (Cocos nucifera) milk and meat from Cameroon. Ernährung Nutr 27:300–303

    CAS  Google Scholar 

  • Kailaku SI, Syah ANA, Risfaheri R, Setiawan B, Sulaeman A (2015) Carbohydrate-electrolyte characteristics of coconut water from different varieties and its potential as natural isotonic drink. Intl J Advanced Sci, Eng and Info Tech 5(3):174–177. https://doi.org/10.18517/ijaseit.5.3.515

    Article  Google Scholar 

  • Kailaku SI, Setiawan B, Sulaeman A (2017) The shelf-life estimation of cold sterilized coconut water. Planta Tropika J Agro Sci 5(1):62–69. https://doi.org/10.18196/pt.2017.072.62-69

    Article  Google Scholar 

  • Kale VS (2016) Consequence of temperature, pH, turbidity and dissolved oxygen water quality parameters. Intl Advanced Res J Sci, Eng and Tech 3:186–190. https://doi.org/10.17148/IARJSET.2016.3834

    Article  Google Scholar 

  • Kanimozhi, Shoba N, Venkatesan K (2018) Evaluation of coconut hybrids for tender nut. Madras Agric J 105(7-9):329–331

    Google Scholar 

  • Kannangara AC, Chandrajith VGG, Ranaweera KKDS (2018) Comparative analysis of coconut water in four different maturity stages. J Pharmacognosy and Phytochem 7(3):1814–1817

    CAS  Google Scholar 

  • Kellard B, Busfield DM, Kinderlerer JL (1985) Volatile off-flavour compounds in desiccated coconut. J Sci Food and Agri 36(5):415–420. https://doi.org/10.1002/jsfa.2740360516

    Article  CAS  Google Scholar 

  • Kende H, Zeevaart J (1997) The five “classical” plant hormones. Plant Cell 9:1197–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keng SK, Easaa AM, Muhamedb AMC, Ooib CH, Chew TT (2017) Composition and physicochemical properties of fresh and freeze-concentrated coconut (Cocos nucifera) water. J Agrobiotech 8(1):13–24

    Google Scholar 

  • Khan MN, Rehman M, Khan KW (2003) A study of chemical composition of Cocos nucifera L. (coconut) water and its usefulness as rehydration fluid. Pakistan J Bot Karachi 35(5):925–930

    Google Scholar 

  • Kim MJ, Choi SJ, Lim ST, Kim HK, Kim YJ, Yoon HG, Shin DH (2008) Zeatin supplement improves scopolamine-induced memory impairment in mice. Biosci Biotechnol Biochem 72(2):577–581. https://doi.org/10.1271/bbb.70480

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Morisaki N, Tago Y, Hashimoto Y, Iwasaki S, Kawachi E (1995) Identification of a major cytokinin in coconut milk. Experientia 51(11):1081–1084. https://doi.org/10.1007/BF01946921

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Morisaki N, Tago Y, Hashimoto Y, Iwasaki S, Kawachi E, Nagata R, Shudo K (1997) Structural identification of a major cytokinin in coconut milk as 14-O-(3-O-[beta-D-galactopyranosyl-(1-->2)-alpha-D-galactopyranosyl- (1-->3)-alpha-L-arabinofuranosyl]-4-O-(alpha-L-arabinofuranosyl)- beta-d-galactopyranosyl)-trans-zeatin riboside. Chem and Pharmaceutical Bull 45(2):260–264. https://doi.org/10.1248/cpb.45.260

    Article  CAS  Google Scholar 

  • Kodjo NF, Konan JL, Doue GG, Yao SDM, Allou K, Niamke S (2015) Caractérisation physico-chimique des composantes de noix immature et mature de l’hybride de cocotier (Cocos nucifera L.) Nain Jaune Malaisie x Grand Vanuatu cultivé en Côte d’Ivoire. J Animal and Plant Scis 27(1):4193–4206

    Google Scholar 

  • Krisanapook K, Jaroonchon N, Imsabai W (2016) Physiological traits and 2-acetyl-1-pyrroline development of aromatic coconut fruit. Acta Hort 1129:79–84. https://doi.org/10.17660/ActaHortic.2016.1129.11

    Article  Google Scholar 

  • Kumar RZAK, Bhaskar A (2012). Determination of bioactive components from the ethanolic peel extract of Citrus reticulata by Gas chromatography-Mass Spectrometry. Intl J Drug Dev Res 4(4): 166–174

    Google Scholar 

  • Kuberski T, Roberts A, Linehan B, Bryden RN, Teburae M (1979) Coconut water as a rehydration fluid. New Zealand Med J 90(641):98–100

    CAS  PubMed  Google Scholar 

  • Kumar BA, Reddy AG, Kumar PR, Reddy YR, Rao TM, Haritha C (2013) Protective role of N-Acetyl LCysteine against reproductive toxicity due to interaction of lead and cadmium in male Wistar rats. J Natural Sci, Biol and Medicine 4(2):414–419

    Article  Google Scholar 

  • Kumar M, Saini SS, Agarwal PK, Roy P, Sircar D (2021) Nutritional and metabolomics characterization of the coconut water at different nut developmental stages. J Food Composit Anal 96. https://doi.org/10.1016/j.jfca.2020.103738

  • Kunle-Alabi OT, Akindele OO, Odoh MI, Oghenetega BO, Raji Y (2017) Comparative effects of coconut water and N-Acetyl cysteine on the hypothalamo-pituitary-gonadal axis of male rats. Songklanakarin J Sci Technol 39(6):759–764

    CAS  Google Scholar 

  • Kwiatkowski A, Clemente E, Scarcelli A, Batista V (2008) Quality of coconut water ‘in natura’ belonging to Green Dwarf fruit variety in different stages of development in plantation on the northwest area of Parana. Brazil Int J Food Agric Environ 6(1):102–105

    CAS  Google Scholar 

  • Kwiatkowski A, Oliveira DM, Clemente E (2012) Atividade enzimática e paramêtros fisico-químicos de água de cocos colhidos em diferentes estádios de desenvolvimento e estação climática (Enzymatic activity and physicochemical parameter of coconut water of fruit harvested on different stages of development and climate seasonal). Rev Bras Frutic Jaboticabal – SP 34(2):551–559

    Article  Google Scholar 

  • Labhade SR (2017) Selective mercurimetric titration assay of chloride concentration in the water of green coconuts using novel indicator system. Intl J Pharmacy and Pharmaceutical Sci 9(3):268–272. https://doi.org/10.22159/ijpps.2017v9i3.16691

    Article  CAS  Google Scholar 

  • Lal JJ, Kumar CVS, Indira M (2003) Coconut palm. In: Encyclopedia of food science and nutrition, 2nd edn. Academic, pp 1464–1475. https://doi.org/10.1016/B0-12-227055-X/00263-7

    Chapter  Google Scholar 

  • Lapitan OB, Mabesa RC (1983) Chemical and sensory characteristics of Laguna and Golden coconuts (Cocos nucifera L.). Philipp Agric 66:144–150

    Google Scholar 

  • Lazim MIM, Badruzaman NA, Peng KS, Long K (2015, 6) Quantification of cytokinins in coconut water from different maturation stages of Malaysia’s coconut (Cocos nucifera L.) varieties. J Food Process Technol:11. https://doi.org/10.4172/2157-7110.1000515. 5 pages

  • Leong LP, Shui G (2002) An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem 76:69–75. https://doi.org/10.1016/S0308-8146(01)00251-5

    Article  CAS  Google Scholar 

  • Letham DS (1974) Regulators of cell division in plant tissues. XX. The cytokinins of coconut milk. Physiol Plant 32:66–70

    Article  CAS  Google Scholar 

  • Letham DS, Zeatin (1963) A factor inducing cell division isolated from Zea mays. Life Sci 2:569–573

    Article  CAS  Google Scholar 

  • Lockard RG, Ballaux JC, Azucena B (1969) The results of pre-treatment leaf and nut water analysis from ten coconut fertilizer experiments. Philipp Agric Scientist 53:276–288

    Google Scholar 

  • Loomba S, Jothi V (2013) Cocos nucifera: its properties and contributions to dentistry. Intl J Scientific Study 1(3):138–140

    Google Scholar 

  • Luckanatinvong V, Siriphanich J (2018) Effect of cross- and self-pollination on 2-acetyl-1-pyroline content and other fruit characteristics of aromatic coconut (Cocos nucifera Linn.). Acta Hort 1208:429–436. https://doi.org/10.17660/ActaHortic.2018.1208.59

    Article  Google Scholar 

  • Luckanatinvong V, Sornkeaw P (2011) Quality of blanched aromatic coconut for export. Agric Sci J 42(1):147–150

    Google Scholar 

  • Ma Z, Ge L, Lee ASY, Yong JWH, Tan SN, Ong ES (2008) Simultaneous analysis of different classes of phytohormones in coconut (Cocos nucifera L.) water using high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry after solid-phase extraction. Anal Chim Acta 610(2):274–281. https://doi.org/10.1016/j.aca.2008.01.045

    Article  CAS  PubMed  Google Scholar 

  • Machado VP, Nunes JF, Fernandez DRP, Cordeiro MA, de Medeiros CHN, Medeiros ALN, Monteiro AWU (2006) Fertilidade após a inseminação artificial intra- cervical ou laparoscópica intra-uterina de ovelhas utilizando diluidores à base de água de coco (fertility after intra-cervical or laparoscopic intrauterine artificial insemination of ewes using coconut water-based thinners). Braz J Vet Res Anim Sci 43:43–49

    Article  Google Scholar 

  • Macheix JJ, Fleuriet A, Billot J (1990) Fruit phenolics. CRC Press, Boca Raton, pp 378

    Google Scholar 

  • Magda RR (1992) Coco-soft drink: health beverage from coconut water. Food market Tech 6(6):22–23

    Google Scholar 

  • Mahayothee B, Koomyart I, Khuwijitjaru P, Siriwongwilaichat P, Nagle M, Müller J (2016) Phenolic compounds, antioxidant activity, and medium chain fatty acids profiles of coconut water and meat at different maturity stages. Intl J Food Properties 19(9):2041–2051. https://doi.org/10.1080/10942912.2015.1099042

    Article  CAS  Google Scholar 

  • Mandal SM, Dey S, Mandal M, Sarkar S, Maria-Neto S, Franco OL (2009) Identification and structural insights of three novel antimicrobial peptides isolated from green coconut water. Peptides 30(4):633–637. https://doi.org/10.1016/j.peptides.2008.12.001

    Article  CAS  PubMed  Google Scholar 

  • Mantena S, Jagadish BSR, Siripurapu KB, Unnikrishnan MK (2003) In vitro evaluation of antioxidant properties of Cocos nucifera Linn. water. Nahrung 47(2):126–131. https://doi.org/10.1002/food.200390023

    Article  PubMed  Google Scholar 

  • Martial-Didier AK, Siméon BK, Fatou C, Parfait JKNE, Kablan T (2017) Effects of storage temperature on physicochemical parameters of coconut (Cocos nucifera var. dwarf of Guinea Equatorial) water. Intl J Scientific and Eng Res 8(12):1745–1749

    Google Scholar 

  • Mathew TM (2011) Emerging trends in the production of coconut water beverages in India. Cocoinfo Intl 18(2):20–29

    Google Scholar 

  • Matsui KN, Granado LM, de Oliveira PV, Tadini CC (2007) Peroxidase and polyphenol oxidase thermal inactivation by microwaves in green coconut water simulated solutions. LWT- Food Sci Technol 40(5):852–859. https://doi.org/10.1016/j.lwt.2006.03.019

    Article  CAS  Google Scholar 

  • Matsui KN, Gut JAW, de Oliveira PV, Tadini CC (2008) Inactivation kinetics of polyphenol oxidase and peroxidase in green coconut water by microwave processing. J Food Eng 88(2):169–176. https://doi.org/10.1016/j.jfoodeng.2008.02.003

    Article  CAS  Google Scholar 

  • McCullough JL, Weinstein GD (2002) Clinical study of safety and efficacy of using topical kinetin 0.1% (Kinerase R) to treat photodamaged skin. Cosmetic Dermatol 15:29–32

    Google Scholar 

  • Medeiros VFLP, Medeiros AC (2012) O uso terapêutico da água de coco. (Therapeutic use of coconut water). J Surgical and Clin Res 3(2):75–83. https://doi.org/10.20398/jscr.v3i2.3570

    Article  Google Scholar 

  • Meethaworn K, Siriphanich J (2014) Volatiles and enzymes involved in off-flavor development in young trimmed coconut during low temperature storage. Agric Sci J 45(3/1 Suppl):273–276

    Google Scholar 

  • Meethaworn K, Siriphanich J (2017) Volatiles and enzymes involved in off-flavor development in trimmed young coconut water during low temperature storage. Acta Hortic 1178:105–110. https://doi.org/10.17660/ActaHortic.2017.1178.19

    Article  Google Scholar 

  • Miller CO, Skoog F, Von Saltza MH, Strong FM (1955) Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc 77(5):1392–1393. https://doi.org/10.1021/ja01610a105

    Article  CAS  Google Scholar 

  • Miller CO, Skoog F, Okumura FS, von Saltza MH, Strong FM (1956) Isolation, structure and synthesis of kinetin, a substance promoting cell division. J Am Chem Soc 78:1375–1380. https://doi.org/10.1021/ja01588a032

    Article  CAS  Google Scholar 

  • Mishra S, Agrahari K, Shah DK (2017a) Intervention and effect of coconut water on dengue patients. Intl J Innov Res and Advanced Stud 4(1):34–37

    Google Scholar 

  • Mishra S, Agrahari K, Shah DK (2017b) Prevention and control of dengue by diet therapy. Intl J Mosquito Res 4(1):13–18

    Google Scholar 

  • Moir C J, Andrew-Kabilafkas C, Arnold G, Cox BM, Hocking AD, Jenson I (2001) Spoilage of Processed Foods: Causes and Diagnosis. Waterloo: The Food Micro Biol of the Australian Institute of Food Sci and Tech Incorporate. ISBN No: 978-0957890701 p 428

    Google Scholar 

  • Mondal H, Mandal RK, Biswas BB (1970) Nucleic acids in coconut water. Plant Cell Physiol 11(1):177–181. https://doi.org/10.1093/oxfordJs.pcp.a074491

    Article  CAS  Google Scholar 

  • Mooi C, Koh S, Long K (2015) Simultaneous detection and quantification of zeatin and kinetin in coconut water using ultra performance liquid chromatography coupled with a simple step solid phase extraction J. Anal Chem 70(7):819–824. https://doi.org/10.1134/S1061934815070114

    Article  CAS  Google Scholar 

  • Munoz RAA, Kolbe M, Siloto RC, Oliveira PV, Angnes L (2007) Ultrasound-assisted treatment of coconut water samples for potentiometric stripping determination of zinc. J Braz Chem Soc 18(2):410–415. https://doi.org/10.1590/S0103-50532007000200025

    Article  CAS  Google Scholar 

  • Murasaki-Aliberti NDC, Da Silva RM, Gut JA, Tadini CC (2009) Thermal inactivation of poly phenol oxidase and peroxidase in green coconut (Cocos nucifera) water. Int J Res Agric Food Sci 44(12):2662–2668. https://doi.org/10.1111/j.1365-2621.2009.02100.x

    Article  CAS  Google Scholar 

  • Nadanasabapathy S, Kumar R (1999) Physico-chemical constituents of tender coconut (Cocos nucifera L.). Indian J AgricSci 69(10):750–751

    Google Scholar 

  • Nakano L A, Leal Jr. WF, Freitas DGC, Cabral LMC, Penha EM, Penteado AL, Matta VM (2011) Coconut water processing using ultrafiltration and pasteurization. In: Proceedings of 11th Intl Congress on Engineering and Food. National Technical University of Athens, Vol. III. 22-26 May 2011, Athens, Greece. pp 1967–1968

    Google Scholar 

  • Nakum VH, Kakade DK, Tomar S, Memane PG, Deshmukh NA, Sharma SJ, Patel CD (2010) Evaluation of coconut (Cocos nucifera L.) cultivars for age of tender nuts in different season. The Asian J Hort 4(2):367–369

    Google Scholar 

  • Naozuka J, Oliveira PV (2006) Minimization of sample pre-treatment for Al, Cu and Fe determination in coconut water by electrothermal atomic absorption spectrometry. J Braz Chem Soc 17(3):521–526. https://doi.org/10.1590/S0103-50532006000300014

    Article  CAS  Google Scholar 

  • Naozuka J, da Veiga MAMS, Richter EM, Paixao TRLC, Angnes L, Oliveira PV (2011) Use of metals and anion species with chemometrics tools for classification of unprocessed and processed coconut waters. Food Anal Methods 4(1):49–56. https://doi.org/10.1007/s12161-010-9124-x

    Article  Google Scholar 

  • Nasution Z, Jirapakkul W, Tongkhao K, Chanput W (2020) The effect of coconut water on adipocyte differentiation and lipid accumulation in 3T3-L1 cells. J Nutr Sci Vitaminol (Tokyo) 66(Supplement):343–S348. https://doi.org/10.3177/jnsv.66.S343

    Article  Google Scholar 

  • Neto UF, Franco L, Tabacow K, Machado NL (1993) Negative findings for use of coconut water as an oral rehydration solution in childhood diarrhea. J Am Coll Nutr 12:190–193. https://doi.org/10.1080/07315724.1993.10718301

    Article  Google Scholar 

  • Neto FM, Gheyi HR, de Holanda JS, de Medeiros JF, Fernandes PD (2002) Qualidade do fruto verde de coqueiro em função da irrigação com água salina (Quality of green coconut fruits in relation to salinity of irrigation water). Rev Bras Eng Agríc Ambient 6:69–75

    Article  Google Scholar 

  • Neto MF, De Holanda JS, Folegatti MV, Gheyi HR, Pereira WE, Cavalcante LF (2007) Qualidade do fruto do coqueiro anão verde em função de nitrogênio e potássio na fertirrigação (Quality of green fruits of green dwarf coconut in relation to doses of nitrogen and potassium via fertigation). Revista Brasileira de Engenharia Agrı’cola e Ambiental 11(5):453–458. https://doi.org/10.1590/S1415-43662007000500001

    Article  Google Scholar 

  • Neto MJJ, Gondim JO, Raddi MS, Pansani CA (2009) Viability of human fibroblasts in coconut water as a storage medium. Int Endod J 42(9):827–830. https://doi.org/10.1111/j.1365-2591.2009.01591.x

    Article  Google Scholar 

  • Ogundiya MO (1991) Glucose content of nut water in four varieties of coconut palm (Cocos nucifera). J Sci Food Agric 56:399–402

    Article  CAS  Google Scholar 

  • Oliveira HJS, de Abreu CMP, dos Santos CD, Cardoso MG, Teixeira JEC, Guimarães NCC (2003) Carbohydrate measurements on four brands of coconut water. Ciência e Agrotecnologia 27(5):1063–1067

    Article  CAS  Google Scholar 

  • Oliveira ML, Brandao GC, de Andrade JB, Ferreira SLC (2018) Determination of free and total sulfur (IV) compounds in coconut water using high-resolution continuum source molecular absorption spectrometry in gas phase. Talanta 179:810–815. https://doi.org/10.1016/j.talanta.2017.11.070

    Article  CAS  PubMed  Google Scholar 

  • Ololade ZS, Kuyooro SE, Ogunmola OO, Oyelese OJ (2017) Physicochemical, volatile organic composition, phenolic, flavonoid and ascorbic acid contents, antioxidant, anti-arthritic and anti-inflammatory properties of Cocos nucifera juice. Global J Med Res: B Pharma, Drug Discovery, Toxicology and Medicine 17(2):43–49

    Google Scholar 

  • Ovalles JF, León LA, Vielma RA, Medina A (2002) Determinación del contenido de aminoácidos libres del agua de coco tierno por HPLC Revisión electrónica sobre la nueva tecnología para el envasado del agua de coco (Determination of the free amino acid content of young coconut water by HPLC and electronic review on the new technology for the packaging of coconut water). Rev Fac Farm 44(1):70–78

    Google Scholar 

  • Paixao LB, Brandao GC, Araujo R, Korn MGA (2019) Assessment of cadmium and lead in commercial coconut water and industrialized coconut milk employing HR-CS GF AAS. Food Chem 284:259–263. https://doi.org/10.1016/j.foodchem.2018.12.116

    Article  CAS  PubMed  Google Scholar 

  • Pandolina WG (1983) Coconut water and coconut sap: suggestion for research and development. Dent Tech 1(2):37–48

    Google Scholar 

  • Paull RE, Cheng CC (2003) Postharvest physiology, handling and storage of pineapple. In: Bartholomew DP, Paull RE, Rohrbachb KG (eds) The pineapple: botany, production and uses. CABI Publishing, UK, pp 253–274. https://doi.org/10.1079/9780851995038.0000

    Chapter  Google Scholar 

  • Petroianu GA, Kosanovic M, Shehatta IS, Mahgoub B, Saleh A, Maleck WH (2004) Green coconut water for intravenous use: trace and minor element content. The J Trace Elements in Exp Medicine 17(4):273–282. https://doi.org/10.1002/jtra.20010

    Article  CAS  Google Scholar 

  • Poduval M, Hasan MA, Chattopadhyay (1998) Evaluation of coconut cultivars for tender nut water for West Bengal. Indian Cocon J 29(1):3–6

    Google Scholar 

  • Porto E, Alves-Filho EG, Silva LMA, Fonteles TV, Nascimento RBR, Fernandes FAN, Rodrigues S (2020) Ozone and plasma processing effect on green coconut water. Food Res Int:131, 109000. https://doi.org/10.1016/j.foodres.2020.109000

  • Potes ML, Nakadi FV, Frois CFG, Vale MGR, Silva MM (2017) Investigation of spectral interferences in the determination of selenium in coconut water by atomic absorption spectrometry. Poster presented in the 14th Symposium on Atomic Spectrometry, 2nd to 7th April, 2017, Vitoria-Espirito Santo-Brazil

    Google Scholar 

  • Potes ML, Nakadi FV, Frois CFG, Vale MGR, Silva MM (2019) Investigation of the conditions for selenium determination by photochemical vapor generation coupled to graphite furnace atomic absorption spectrometry. Microchem J 147:324–332. https://doi.org/10.1016/j.microc.2019.03.053

    Article  CAS  Google Scholar 

  • Prades A, Assa RR, Dornier M, Pain JP (2008) Near infrared spectroscopy: a tool for on-line monitoring of beverage quality [Poster]. In: ICEF 10/Tenth International Congress on Engineering and Food, Viña del Mar, Chile, April 20–24, 2008

    Google Scholar 

  • Prades A, Dornier M, Diop N, Pain JP (2012a) Coconut water uses, composition and properties: a review. Fruits 67(2):87–107. https://doi.org/10.1051/fruits/2012002

    Article  CAS  Google Scholar 

  • Prades A, RRA A, Dornier M, Pain JP, Boulanger R (2012b) Characterisation of the volatile profile of coconut water from five varieties using an optimised HS-SPME-GC analysis. J Sci Food Agric 92(12):2471–2478. https://doi.org/10.1002/jsfa.5655

    Article  CAS  PubMed  Google Scholar 

  • Prado FC, Lindner JDD, Inaba J, Soccol VT, Brar SK, Soccol CR (2015) Development and evaluation of a fermented coconut water beverage with potential health benefits. J Funct Foods 12:489–497. https://doi.org/10.1016/j.jff.2014.12.020

    Article  CAS  Google Scholar 

  • Priya SR, Ramaswamy L (2014) Tender coconut water – natures elixir to mankind. Intl J Recent Scientific Res 5(8):1485–1490

    Google Scholar 

  • Pue AG, Rivu W, Sundarrao C, Singh K (1992) Preliminary studies on changes in coconut water during maturation of the fruit. Sci New Guin 18(2):81–84

    Google Scholar 

  • Purohit SR, Behara RK, Mishra BK (2016) Colour based quality deterioration of tender coconut water. Intl J Food Sci and Nutri 5(2):93–95

    Google Scholar 

  • Purohit SR, Behera RK, Mishra BK (2017) Thermal processing of tender coconut water: a colour preservation approach. Food and Appl Bio Sci J 5(2):82–92

    Google Scholar 

  • Queiroz C, LopesM FE, Mesquita VLV (2008) Polyphenol oxidase: characteristics and mechanisms of browning control. Food Rev Int 24(4):361–375. https://doi.org/10.1080/87559120802089332

    Article  CAS  Google Scholar 

  • Raghavendra SN, Swamy SRR, Rastogi NK, Raghavarao KSMS, Kumar S, Tharanathan RN (2006) Grinding characteristics and hydration properties of coconut residue: a source of dietary fiber. J Food Eng 72(3):281–286

    Article  Google Scholar 

  • Rahmani A, Rahmani K, Dobaradaran S, Mahvi AH, Mhamadjani R, Rahmani H (2010) Child dental caries in relation to fluoride and some inorganic constituents in drinking water in Arsanjan. Iran Fluoride 43:179–186

    CAS  Google Scholar 

  • Raissa ET, Felicito MR, Rita PL, Marni EC (2007) Total free sugars, oil and total phenolics content of stored coconut (Cocos nucifera L.) water. Philipp J Sci 136(2):103–108

    Google Scholar 

  • Ramful D, Tarnus E, Aruoma OI, Bourdon E, Bahorun T (2011) Polyphenol composition, vitamin C content and antioxidant capacity of Mauritian citrus fruit pulps. Food Res Int 44(7):2088–2099. https://doi.org/10.1016/j.foodres.2011.03.056

    Article  CAS  Google Scholar 

  • Ranasinghe S, Wimalasekara R, de Saram PSA, Fernando WPKF (2003) Preservation of young King Coconuts during simulated sea shipment. ASEAN Food J 12:175–181

    Google Scholar 

  • Rattan SIS, Clark BFC (1994) Kinetin delays the onset of ageing characteristics in human fibroblasts. Biochem and Biophy Res Communications 201:665–672

    Article  CAS  Google Scholar 

  • Rattan SIS, Sodagam L (2005) Gerontomodulatory and youth-preserving effects of zeatin on human skin fibroblasts undergoing aging in vitro. Rejuvenation Res 8(1):46–57. https://doi.org/10.1089/rej.2005.8.46

    Article  CAS  PubMed  Google Scholar 

  • Reddy EP, Lakshmi TM (2014) Coconut water-properties, uses, nutritional benefits in health and wealth and in health and disease. A review. J Current Trends in Clin Med and Lab Biochem 2(2):6–18

    Google Scholar 

  • Richardson PIC, Muhamadali H, Ellis DI, Goodacre R (2019) Rapid quantification of the adulteration of fresh coconut water by dilution and sugars using Raman spectroscopy and chemometrics. Food Chem 272:157–164. https://doi.org/10.1016/j.foodchem.2018.08.038

    Article  CAS  PubMed  Google Scholar 

  • Richter EM, de Jesus DP, Muñoz RAA, do Lago CL, Angnes L (2005) Determination of anions, cations, and sugars in coconut water by capillary electrophoresis. J Braz Chem Soc 16(6A):1134–1139, doi: https://doi.org/10.1590/S0103-50532005000700008

  • Robert HS, Frim J (2009) Auxin and other signals on the move in plants. National Chem Biol 5(5):325–332. https://doi.org/10.1038/nchembio.170

    Article  CAS  Google Scholar 

  • Robinson DS (1991) Peroxidases and catalases in foods. In: Robinson DS, Eskin NAM (eds) Oxidative enzymes in foods. Elsevier Appl Sci, New York, pp 1–45

    Google Scholar 

  • Robinson K, Arheart K, Refsum H, Brattström L, Boers G, Ueland P, Rubba P, Palma- Reis R, Meleady R, Daly L, Witteman J, Graham I (1998) Low circulating folate and vitamin B6 concentrations: risk factors for stroke, peripheral vascular disease, and coronary artery disease. Circulation 97:437–443

    Article  CAS  PubMed  Google Scholar 

  • Roger MG (2010) Oral rehydration therapy: how it works. http://motherchildtrust.org/assessed on 8/11/2020

  • Rosa MF, Abreu FAP (2000) Água de Coco: Métodos de Conservação (Coconut water – conservation methods). Fortaleza: EMBRAPA – SPI, Document no. 37, June 2000. p 40

    Google Scholar 

  • Samuni Y, Goldstein S, Dean OM, Berk M (2013) The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta 1830(8):4117–4129

    Article  CAS  PubMed  Google Scholar 

  • Sandhya VG, Rajamohan T (2006) Beneficial effects of coconut water feeding on lipid metabolism in cholesterol fed rats. J Med Food 9(3):400–407. https://doi.org/10.1089/jmf.2006.9.400

    Article  CAS  PubMed  Google Scholar 

  • Sandhya VG, Rajamohan T (2008) Comparative evaluation of the hypolipidemic effects of coconut water and lovastatin in rats fed fat cholesterol enriched diet. Food Chem Toxicol 46:3586–3592. https://doi.org/10.1016/j.fct.2008.08.030

    Article  CAS  PubMed  Google Scholar 

  • Sanganamoni S, Purohit S, Rao PSJ (2017a) Effect of ultraviolet-c treatment on enzymes and nutritional properties of tender coconut water. Int J Curr Microbiol Appl Sci 6(5):2905–2918. https://doi.org/10.20546/ijcmas.2017.605.330

    Article  CAS  Google Scholar 

  • Sanganamoni S, Mallesh S, Vandana K, Srinivasa Rao P (2017b) Thermal treatment of tender coconut water – enzyme inactivation and biochemical characterization. Int J Curr Microbiol App Sci 6(5):2919–2931. https://doi.org/10.20546/ijcmas.2017.605.331

    Article  CAS  Google Scholar 

  • Sanganamoni S, Mahant NK, Rao SP (2018) Modeling of polyphenol oxidase and peroxidase inactivation in coconut water during thermal treatment. Intl J Chem Stud 6(6):1953–1958

    CAS  Google Scholar 

  • Santana MJ, de Oliveira AL, Queiroz LHK Jr, Mandal SM, Matos CO, Dias RO, Franco OL, Liao LM (2015) Structural insights into Cn-AMP1, a short disulfide-free multifunctional peptide from green coconut water. FEBS Lett 589(5):639–644. https://doi.org/10.1016/j.febslet.2015.01.029

    Article  CAS  PubMed  Google Scholar 

  • Santos JL, Bispo VS, Filho AB, Pinto IFD, Dantas LS, Vasconcelos DF, Abreu F, Melo DA, Matos IA, Freitas FP, Gomes OF, Medeiros MHG, Matos HR (2013) Evaluation of chemical constituents and antioxidant activity of coconut water (Cocos nucifera L.) and caffeic acid in cell culture. An Acad Bras Cienc 85(4):1235–1247. https://doi.org/10.1590/0001-37652013105312

    Article  CAS  PubMed  Google Scholar 

  • Santoso U, Kubo K, Ota T, Tadokoro T, Maekawa A (1996) Nutrient composition of kopyor coconuts (Cocos nucifera L.). Food Chem 57(2):299–304. https://doi.org/10.1016/0308-8146(95)00237-5

    Article  CAS  Google Scholar 

  • Sartori ER, Takeda HH, Fatibello O (2011) Glassy carbon electrode modified with functionalized carbon nanotubes within a poly (allylamine hydrochloride) film for the voltammetric determination of sulfite in foods. Electroanalysis 23(11):2526–2533. https://doi.org/10.1002/elan.201100122

    Article  CAS  Google Scholar 

  • Sharma G, Sunita M, Madhvi D (2017) Product development from tender green coconut and its organoleptic testing and sensory evaluation. Intl J Advance Res, Ideas and Innovations in Tech 3(6):821–827

    Google Scholar 

  • Shen X, Wang Y, Ran L, Liu R, Sun X, Hu L, Xiao Y, Chen F (2022) Flavor deterioration of liquid endosperm in postharvest tender coconut revealed by LC-MS-based metabolomics, GC-IMS and E-tongue. Postharvest Biol Technol 187. https://doi.org/10.1016/j.postharvbio.2022.111866

  • Shenkin A (2006) The key role of micronutrients. Clin Nutr 25(1):1–13. https://doi.org/10.1016/j.clnu.2005.11.006

    Article  CAS  PubMed  Google Scholar 

  • Shivashankar S (1991) Bio-chemical changes during fruit maturation in coconut. J Plantn Crops 19(2):102–119

    CAS  Google Scholar 

  • Sierra ZN, Velasco JR (1976) Studies on the growth factor of coconut water –isolation of the growth promoting activity. Philipp J Cocon Stud 1:11–18

    Google Scholar 

  • Silva JRV, Lucci CM, Carvalho FCA, Báo SN, Costa SHF, Santos RR, Figueiredo JR (2000) Effect of coconut water and Braun Collins solutions at different temperatures and incubation times on the morphology of goat preantral follicles preserved in vitro. Theriogenology 54(5):809–822. https://doi.org/10.1016/S0093-691X(00)00392-7

    Article  CAS  PubMed  Google Scholar 

  • Silva ON, Porto WF, Migliolo L, Mandal SM, Gomes DG, Holanda HH, Silva RS, Dias SC, Costa MP, Costa CR, Silva MR, Rezende TM, Franco OL (2012) Cn-AMP1: a new promiscuous peptide with potential for microbial infections treatment. Biopolymers 98(4):322–331. https://doi.org/10.1002/bip.22071

    Article  CAS  PubMed  Google Scholar 

  • Sinaga SM, Margata L, Silalahi J (2015) Analysis of total protein and non-protein nitrogen in coconut water and meat (Cocos nucifera L.) by using Kjeldahl method. Intl J Pharm Tech Res 8(4):551–557

    CAS  Google Scholar 

  • Siriphanich J, Saradhuldhat P, Romphophak T, Krisana-pook K, Pathaveerat S, Tongchitpakdee S (2011) Coconut. In: Yahia EM (ed) Postharvest Biolology and Technology of Tropical and Subtropical Fruits: Cocona to Mango. Woodhead Publishing Series in Food Sci, Tech and Nutri, Cambridge. https://doi.org/10.1533/9780857092885.8, pp 8-35

  • Solangi AH, Iqbal MZ (2011) Chemical composition of meat (kernel) and nut water of major coconut (Cocos nucifera L.) cultivars at coastal area of Pakistan. Pak J Bot 43(1):357–363

    CAS  Google Scholar 

  • Somasiri LLW, Warnasiri WH, George GD, Jeganathan M (1986) Report of the soils and plant nutrition division. Coconut Research Institute, pp 87–88

    Google Scholar 

  • Srebernich SM (1998) Caracterização física e química da água de fruto de coco (Cocos nucifera), variedades gigante e híbrido PB-121, visando o desenvolvimento de uma bebida com características próximas às da água de coco (Physical and chemical characterization of coconut fruit water from giant hybrid PB-121, aiming at the development of a beverage with characteristics close to those of coconut water). Tese (Doutorado) – Universidade Estadual de Campinas, Campinas. p189

    Google Scholar 

  • Sucupira NR, Filho EGA, Silva LMA, de Brito ES, Wurlitzer NJ, Sousa PHM (2017) NMR spectroscopy and chemometrics to evaluate different processing of coconut water. Food Chem 216:217–224. https://doi.org/10.1016/j.foodchem.2016.08.035

    Article  CAS  PubMed  Google Scholar 

  • Suresh TP, Hedge VR, Setty SV, Rangachar TR (1968) Fluid therapy by tender coconut water in veterinary practice. Indian Vet J 45(10):829–837

    CAS  PubMed  Google Scholar 

  • Takei KT, Yamaya H, Sakakibara J (2003) A method for separation and determination of cytokinin nucleotides from plant tissues. Plant Res 116(2003):265–269. https://doi.org/10.1007/s10265-003-0099-1

    Article  CAS  Google Scholar 

  • Takemura S, Ichikawa H, Naito Y, Takagi T, Yoshikawa T, Minamiyama Y (2014) S-allyl cysteine ameliorates the quality of sperm and provides protection from age-related sperm dysfunction and oxidative stress in rats. J Clin Biochem and Nutri 55(3):155–161

    Article  CAS  Google Scholar 

  • Tan TC, Cheng LH, Bhat R, Rusul G, Easa AM (2014a) Composition, physicochemical properties and thermal inactivation kinetic of polyphenol oxidase and peroxidase from coconut water obtained from immature, mature and overly-mature coconut. Food Chem 142:121–128. https://doi.org/10.1016/j.foodchem.2013.07.040

    Article  CAS  PubMed  Google Scholar 

  • Tan SN, Yong JWH, Ge L (2014b) Analyses of phytohormones in coconut (Cocos nucifera L.) water using capillary electrophoresis-tandem mass spectrometry. Chromatographia 1:211–226. https://doi.org/10.3390/chromatography1040211

    Article  Google Scholar 

  • Tanqueco RE, Rodriguez FM, Laude RP, Crueno ME (2007) Total free sugars, oil and total phenolics content of stored coconut (Cocos nucifera L.) water. Philipp J Sci 136(2):103–108

    Google Scholar 

  • Tarkowski P, Ge L, Yong JWH, Tan SN (2009) Analytical methods for cytokinins. TrAC Trends in Analytical Chem 28(3):323–335. https://doi.org/10.1016/j.trac.2008.11.010

    Article  CAS  Google Scholar 

  • Tavares AD (2010) Determinação de cádmio e chumbo em alimentos e bebidasindustrializados por espectrometria de absorção atômica com atomização eletrotérmica (Determination of cadmium and lead in processed food and beverages by graphite furnace atomic absorption spectrometry). Tese (Doutorado em Química) – Programa de Pós Graduação emQuímica Universidade Federal da Paraiba. p 84

    Google Scholar 

  • Teixeira LAJ, Bataglia OC, Buzetti S, Furlani E Jr, Isepon JS (2005) Adubação com NPK em coqueiro-Anão-Verde (Cocos nucifera L.) rendimento e qualidade de frutos (NPK fertilization on Dwarf Green coconut (Cocos nucifera L.) – yield and fruit quality). Rev Bras Frutic 27(1):120–123. https://doi.org/10.1590/S0100-29452005000100032

    Article  Google Scholar 

  • Terdwongworakul A, Jarimopas B, Chaiyapong S, Singh SP, Singh J (2009) Determination of physical, acoustical, mechanical, and chemical properties of fresh young coconut fruit for maturity separation. J Testing and Evaluation 38(1). https://doi.org/10.1520/JTE102276. 8 pages

  • Thampan PK, Rethinam P (2004) Coconut products for health and medicine. Indian Cocon J 35:6–15

    Google Scholar 

  • Thomas RJ, Shareefa M, Nampoothiri CK, Mathew J (2022) Evaluation of dwarf varieties of coconut for wilt resistance, nut yield and quality of tender coconut water. Indian J Hort 79(1):39–43. https://doi.org/10.5958/0974-0112.2022.00006.8

    Article  Google Scholar 

  • Tiwari MK (2018) Recent trends in X-ray fluorescence spectrometry: precise investigation of nanomaterials. Spectrosc Eur 30(1):15–19

    Article  CAS  Google Scholar 

  • Trindade JS, Lemos VA, Cerqueira UMFM, Novaes CG, Araujo SA, Bezerra MA (2021) Multivariate optimization of a dispersive liquid-liquid microextraction method for determination of copper and manganese in coconut water by FAAS. Food Chem 365:130473. https://doi.org/10.1016/j.foodchem.2021.130473

    Article  CAS  PubMed  Google Scholar 

  • Tulecke W, Weinstein L, Rutner A, Laurencot H (1961) The biochemical composition of coconut water (coconut milk) as related to its use in plant tissue culture. Contrib Boyce Thompson Inst 21:115–128

    CAS  Google Scholar 

  • Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai (2018) Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines 5:93. https://doi.org/10.3390/medicines5030093., 16 pages

  • Twishsri W, Runheem P, Usathit S, Watanayothin S, Naka P (2014) Study on fatty acid composition and amino acid content of coconut endosperm of selected coconut cultivars in Thailand. Acta Hort 1024:427–432. https://doi.org/10.17660/ActaHortic.2014.1024.59

    Article  Google Scholar 

  • Unagul P, Assantachai C, Phadungruengluij S, Suphantharika M, Tanticharoen M, Verduyn C (2007) Coconut water as a medium additive for the production of docosahexaenoic acid (C22:6 n3) by Schizochytrium mangrovei Sk-02. Bioresour Technol 98(2):281–287. https://doi.org/10.1016/j.biortech.2006.01.013

    Article  CAS  PubMed  Google Scholar 

  • Uphade BK, Gadhave AG (2017) Comparative study of physico-chemical parameters of tender coconut water. Int J Chem Sci 15(1):110–115

    Google Scholar 

  • Uphade BK, Shelke SS, Thorat DG (2008) Studies on some physico-chemical characteristics of coconut water near sugar and chemical factory, Kopergaon (MS). Int J Chem Sci 6(4):2052–2054

    CAS  Google Scholar 

  • Van SJ, Drewes SE (1975) Identification of zeatin and zeatin riboside incoconut milk. Phys Plant 34:106–109

    Article  Google Scholar 

  • van Overbeek J, Conklin ME, Blakeslee AF (1941) Factors in coconut milk essential for growth and development of very young datura embryos. Science 94(2441):350–351. https://doi.org/10.1126/Sci.94.2441.350

    Article  Google Scholar 

  • Verbeke P, Siboska GE, Clark BFC, Rattan SIS (2006) Kinetin inhibits protein oxidation and glycoxidation in vitro. Biochem Biophys Res Commun 276:1265–1270

    Article  Google Scholar 

  • Vermeulen K, Strand M, Krytof V, Havlicek KL, Van der AA, Lenjou M, Nijs G, Rodrigus I, Stockman B, Van Onckelen H, Van Blockstaele DR, Bernemen ZN (2002) Anti-proliferative effect of plant cytokinine analogues with an inhibitory activity on cyclindependent kinases. Leukemia 16(3):299–305

    Article  CAS  PubMed  Google Scholar 

  • Vigliar R, Sdepanian VL, Fagundes-Neto U (2006) Perfil bioquímico da água de coco de coqueiros de região não litorânea (Biochemical profile of coconut water from coconut palms planted in an inland region). J Pediatr 82(4):308–312. https://doi.org/10.2223/JPED.1508

    Article  Google Scholar 

  • Vlachou A, Drummond BK, Mel C (1992) Fluoride concentrations of infant foods and drinks in the United Kingdom. Caries Res 26:29–32

    Article  CAS  PubMed  Google Scholar 

  • Walter EHM, Kuaye AY, Hoorfar J (2014) Case study on the safety and sustainability of fresh bottled coconut water. In: Hoofar J (ed) Global safety of fresh produce, a handbook of best practice, innovative commercial solutions and case study. Woodhead Publishing, Philadelphia, pp 367–382. https://doi.org/10.1533/9781782420279.5.367

    Chapter  Google Scholar 

  • Wang HX, Ng TB (2005) An antifungal peptide from the coconut. Peptides 26(12):2392–2396. https://doi.org/10.1016/j.peptides.2005.05.009

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Liu L, Dong Z, Feng M, Li Y, Tang L (2008) Characteristics and mineral elements of tender coconut water in different coconut (Cocos nucifera L.) cultivars. J Fruit Sci 25(4):601–603

    Google Scholar 

  • Waziri M, Audu AA, Suleiman F (2013) Analysis of some mineral elements in major coconut cultivars in Nigeria. J Nat Sci Res 3(8):7–11

    Google Scholar 

  • Weemaes CA, Ludikhuyze LR, den Broeck IV, Hendrickx ME (1998) Effect of pH on pressure and thermal inactivation of avocado polyphenol oxidase: a kinetic study. J Agric Food Chem 46(7):2785–2792. https://doi.org/10.1021/jf970902s

    Article  CAS  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmulling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci U S A 98:10487–10492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodroof JG (1970) Coconut storage and processing, and minor uses of products of the coconut tree. In: Coconuts: production, processing, products. AVI Publ. Co., Westport, pp 241

    Google Scholar 

  • Wu Y, Hu B (2009) Simultaneous determination of several phytohormones in natural coconut juice by hollow fiber-based liquid-liquid-liquid microextraction-high performance liquid chromatography. J Chromatogr A 1216(45):7657–7663. https://doi.org/10.1016/j.chroma.2009.09.008

    Article  CAS  PubMed  Google Scholar 

  • Wynn T (2017) Nutritional studies on mature and immature coconut meat and coconut water. Yadanabon University Res J 8(1) 8 pages

    Google Scholar 

  • Yalegama LLWC, Karunaratne DN, Sivakanesan R, Jayasekara C (2013) Chemical and functional properties of fibre concentrates obtained from by-products of coconut kernel. Food Chem 141(1):124–130. https://doi.org/10.1016/j.foodchem.2013.02.118

    Article  CAS  PubMed  Google Scholar 

  • Yang HM, Zhou WH, Zhan Q, Li WM (2014) Analysis of flavor components in the coconut juice and beverage based on GC-MS method. Modern Food Sci and Tech 30(4):286–290

    CAS  Google Scholar 

  • Yong JWH, Ge L, NgYF TSN (2009) The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules 14(12):5144–5164. https://doi.org/10.3390/molecules14125144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousefi N, Fatehizedeh A, Ghadiri K, Mirzaei N, Ashrafi SD, Mahvi AH (2016) Application of nanofilter in removal of phosphate, fluoride and nitrite from groundwater. Desalin Water Treat 57:11782–11788

    Article  CAS  Google Scholar 

  • Yousefi M, Ghoochani M, Mahvi AH (2018) Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran. Ecotoxicology and Environal Safety 148:426–430

    Article  CAS  Google Scholar 

  • Zazouli MA, Mahvi AH, Dobaradaran S, Barafrashtehpour M, Mahdavi Y, Balarak D (2014) Adsorption of fluoride from aqueous solution by modified Azolla filiculoides. Fluoride 47:349–358

    CAS  Google Scholar 

  • Zhang Z, Pang X, Xuewu D, Ji Z, Jiang Y (2005) Role of peroxidase in anthocyanin degradation in litchi fruit pericarp. Food Chem 90:47–52. https://doi.org/10.1016/j.foodchem.2004.03.023

    Article  CAS  Google Scholar 

  • Zhao Z, Yu S, Li M, Gui X, Li P (2018) Isolation of exosome-like nanoparticles and analysis of micro RNAs derived from coconut water based on small RNA high-throughput sequencing. J Agric Food Chem 66(11):2749–2757. https://doi.org/10.1021/acs.jafc.7b05614

    Article  CAS  PubMed  Google Scholar 

Web Links

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rethinam, P., Krishnakumar, V. (2022). Composition, Properties and Reactions of Coconut Water. In: Coconut Water. Springer, Cham. https://doi.org/10.1007/978-3-031-10713-9_4

Download citation

Publish with us

Policies and ethics