Skip to main content

A Systematic Literature Review on Numerical Weather Prediction Models and Provenance Data

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Abstract

The weather has been an important issue for mankind since the earliest times. The need to predict the weather accurately increases every day when considering the effects of natural disasters such as floods, hails, extreme winds, landslides, etc. on many sectors from transportation to agriculture, which all depend on weather conditions. Numerical weather prediction (NWP) models, today’s the de-facto tools used for weather forecasting, are scientific software that models atmospheric dynamics in accordance with the laws of physics. These models perform complex mathematical calculations on very large data (gridded) and require high computational power. For this reason, NWP models are scientific software that is usually run on distributed infrastructures and often takes hours to finish. On the other hand, provenance is another key concept as important as weather prediction. Provenance can be briefly defined as metadata that provides information about any kind of data, process, or workflow. In this SLR study, a comprehensive screening of literature was performed to discover primary studies that directly suggest systematic provenance structures for NWP models, or primary studies in which at least a case study was implemented on an NWP model even if considered in a broader perspective. Afterward, these primary studies were thoroughly examined in line with specific research questions, and the findings were presented in a systematic manner. An SLR study on primary studies which combines the two domains of NWP models and provenance research has never been done before. So we think that this work will fill an important gap in literature regarding studies combining the two domains and increase the interest in the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler: an extensible system for design and execution of scientific workflows. In: Proceedings. 16th International Conference on Scientific and Statistical Database Management, pp. 423–424. IEEE (2004)

    Google Scholar 

  2. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for computational tasks: a survey. Comput. Sci. Eng. 10(3), 11–21 (2008)

    Article  Google Scholar 

  3. Futrelle, J., et al.: Semantic middleware for e-science knowledge spaces. In: Proceedings of the 7th International Workshop on Middleware for Grids, Clouds and e-Science (2009)

    Google Scholar 

  4. Groth, P., et al.: An architecture for provenance system. Technical report (2006)

    Google Scholar 

  5. JabRef - Free JabRef Reference Management Tool. https://www.jabref.org. Accessed January 2022

  6. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in software engineering (2007)

    Google Scholar 

  7. Missier, P., et al.: Taverna, reloaded. In: Proceedings of the 22nd International Conference on Scientific and Statistical Database Nanagement (SSDBM 2010) (2010)

    Google Scholar 

  8. Missier, P., Belhajjame, K., Cheney, J.: The W3C PROV family of specifications for modeling provenance metadata. In: Proceedings of the 16th International Conference on Extending Database Technology, pp. 773–776 (2013). https://doi.org/10.1145/2452376.2452478

  9. Moreau, L., et al.: The open provenance model core specification (v1.1). Futur. Gener. Comput. Syst. 27(6), 743–756 (2011)

    Article  Google Scholar 

  10. Muniswamy-Reddy, K.K., Holland, D.A., Braun, U., Seltzer, M.I.: Provenance-aware storage systems. In: USENIX Annual Technical Conference, General Track, pp. 43–56 (2006)

    Google Scholar 

  11. Muniswamy-Reddy, K.K., et al.: Layering in provenance systems. In: Proceedings of the 2009 USENIX Annual Technical Conference (USENIX 2009). USENIX Association (2009)

    Google Scholar 

  12. Pérez, B., Rubio, J., Sáenz-Adán, C.: A systematic review of provenance systems. Knowl. Inf. Syst. 57(3), 495–543 (2018)

    Article  Google Scholar 

  13. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software engineering. In: Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering (EASE 2008) (2008)

    Google Scholar 

  14. PROV-Overview. https://www.w3.org/TR/2012/WD-prov-overview-20121211/. Accessed 20 Dec 2021

  15. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science. ACM SIGMOD Rec. 34(3), 31–36 (2005)

    Article  Google Scholar 

  16. StArt - State of the Art through Systematic Review. LAPES Laboratory of Research on Software Engineering (LAPES). http://lapes.dc.ufscar.br/tools/start_tool. Accessed 10 Jan 2022

  17. Simmhan, Y.L., Plale, B., Gannon, D.: Karma2: provenance management for datadriven workflows. Int. J. Web Serv. Res. (IJWSR) 5(2), 1–22 (2008)

    Article  Google Scholar 

  18. Suriarachchi, I., Zhou, Q., Plale, B.: Komadu: a capture and visualization system for scientific data provenance. J. Open Res. Softw. 3(1) (2015)

    Google Scholar 

  19. W3C: SPARQL 1.1 Query Language (2013). https://www.w3.org/TR/sparql11-query/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Tufek .

Editor information

Editors and Affiliations

A Appendix: Relevant Primary Studies

A Appendix: Relevant Primary Studies

S01

Behrens, H. W., Candan, K. S., Chen, X., Gadkari, A., Garg, Y., Li, M. L., ..., Sapino, M. L. Datastorm-FE: A data-and decision-flow and coordination engine for coupled simulation ensembles. Proceedings of the VLDB Endowment, 11(12), 1906–1909 (2018)

S02

Cheah, Y. W., Plale, B. Provenance quality assessment methodology and framework. Journal of Data and Information Quality (JDIQ), 5(3), 1–20 (2014)

S03

Chen, P., Plale, B., Aktas, M. S. Temporal representation for scientific data provenance. In 2012 IEEE 8th International Conference on E-Science, IEEE, 1–8 (2012)

S04

Chen, P., Plale, B., Aktas, M. S. Temporal representation for mining scientific data provenance. Future generation computer systems, 36, 363–378 (2014)

S05

Cinquini, L., Crichton, D., Mattmann, C., Harney, J., Shipman, G., Wang, F., ..., Schweitzer, R. The Earth System Grid Federation: An open infrastructure for access to distributed geospatial data. Future Generation Computer Systems, 36, 400–417 (2014)

S06

Galizia, A., Roverelli, L., Zereik, G., Danovaro, E., Clematis, A., D’Agostino, D. Using Apache Airavata and EasyGateway for the creation of complex science gateway front-end. Future Generation Computer Systems, 94, 910–919 (2019)

S07

Liu, W., Ye, Q., Wu, C. Q., Liu, Y., Zhou, X., Shan, Y. Machine Learning-assisted Computational Steering of Large-scale Scientific Simulations. In 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), 984–992 (2021)

S08

Lopez, J. L. A., Kalyuzhnaya, A. V., Kosukhin, S. S., Ivanov, S. V. Data quality control for St. Petersburg flood warning system. Procedia Computer Science, 80, 2128–2140 (2016)

S09

Puiu, D., Barnaghi, P., Tönjes, R., Kümper, D., Ali, M. I., Mileo, A., ..., Fernandes, J. Citypulse: Large scale data analytics framework for smart cities. IEEE Access, 4, 1086–1108 (2016)

S10

Tufek, A., Gurbuz, A., Ekuklu, O. F., Aktas, M. S. Provenance collection platform for the weather research and forecasting model. In 2018 14th International Conference on Semantics, Knowledge and Grids (SKG), IEEE, 17–24 (2018)

S11

Tufek, A., Aktas, M. S. On the provenance extraction techniques from large scale log files: a case study for the numerical weather prediction models. In European Conference on Parallel Processing, Springer, 249–260 (2020)

S12

Tufek, A, Aktas, MS. On the provenance extraction techniques from large scale log files. Concurrency and Computation: Practice and Experience (2021). https://doi.org/10.1002/cpe.6559

S13

Turuncoglu, U. U., Dalfes, N., Murphy, S., DeLuca, C. Toward self-describing and workflow integrated Earth system models: A coupled atmosphere-ocean modeling system application. Environmental modelling & software, 39, 247–262 (2013)

S14

Wu, C. Q., Lin, X., Yu, D., Xu, W., Li, L. End-to-end delay minimization for scientific workflows in clouds under budget constraint. IEEE Transactions on Cloud Computing, 3(2), 169–181 (2014)

S15

Xie, Y., Muniswamy-Reddy, K. K., Feng, D., Li, Y., Long, D. D. Evaluation of a hybrid approach for efficient provenance storage. ACM Transactions on Storage (TOS), 9(4), 1–29 (2013)

S16

Zhao, R., Atkinson, M., Papapanagiotou, P., Magnoni, F., Fleuriot, J. Dr. Aid: Supporting Data-governance Rule Compliance for Decentralized Collaboration in an Automated Way. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2), 1–43 (2021)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tufek, A., Aktas, M.S. (2022). A Systematic Literature Review on Numerical Weather Prediction Models and Provenance Data. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13380. Springer, Cham. https://doi.org/10.1007/978-3-031-10542-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10542-5_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10541-8

  • Online ISBN: 978-3-031-10542-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics