Skip to main content

Differential Privacy for Statistical Data of Educational Institutions

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13380))

Included in the following conference series:

  • 1184 Accesses

Abstract

Electronic methods of managing the educational process are gaining popularity. Recently, a large number of user programs have appeared for such accounting. Based on this, the issue of personal data protection requires increased attention. The coronavirus pandemic has led to a significant increase in the amount of data distributed remotely, which requires information security for a wider range of workers on a continuous basis.

In this article, we will consider such a relatively new mechanism designed to help protect personal data as differential privacy. Differential privacy is a way of strictly mathematical definition of possible risks in public access to sensitive data. Based on estimating the probabilities of possible data losses, you can build the right policy to “noise” publicly available statistics. This approach will make it possible to find a compromise between the preservation of general patterns in the data and the security of the personal data of the participants in the educational process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: Proceedings of the Twenty-second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2003, pp. 202–210 (2003)

    Google Scholar 

  2. Dwork, C., Nissim, K.: Privacy-preserving datamining on vertically partitioned databases. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 528–544. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_32

    Chapter  Google Scholar 

  3. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SuLQ framework. In: Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 128–138. ACM (2005)

    Google Scholar 

  4. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  5. McSherry, F.D.: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, ser., SIGMOD 2009, pp. 19–30. Association for Computing Machinery, New York (2009). https://doi.org/10.1145/1559845.1559850

  6. Johnson, N., Near, J.P., Song, D.: Towards practical differential privacy for SQL queries. Proc. VLDBEndow. 11(5), 526–539 (2018). http://arxiv.org/abs/1706.09479

  7. Kenthapadi, K., Tran, T.T.L.: PriPeARL: a framework for privacy-preserving analytics and reporting at LinkedIn. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, ser., CIKM 2018, pp. 2183–2191. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3269206.3272031

  8. Guevara, M.: Google developers, September 2019. https://developers.googleblog.com/2019/09/enabling-developers-and-organizations.html

  9. Wilson, R.J., Zhang, C.Y., Lam, W., Desfontaines, D., Simmons-Marengo, D., Gipson, B.: Differentially private SQL with bounded user contribution. In: Proceedings on Privacy Enhancing Technologies, vol. 2020, no. 2, pp. 230–250 (2020). https://content.sciendo.com/view/journals/popets/2020/2/article-p230.xml

  10. Dajani, A.N., et al.: The modernization of statistical disclosure limitation at the U.S. Census Bureau (2017). https://www2.census.gov/cac/sac/meetings/2017-09/statistical-disclosure-limitation.pdf

  11. Erlingsson, U., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable privacy-preserving ordinal response. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, ser., CCS 2014, pp. 1054–1067 (2014). https://doi.org/10.1145/2660267.2660348

  12. Apple Differential Privacy Team: Learning with privacy at scale (2017). https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html

  13. Ding, B., Kulkarni, J., Yekhanin, S.: Collecting telemetry data privately, December 2017. https://www.microsoft.com/en-us/research/publication/collecting-telemetry-data-privately/

  14. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. J. Priv. Confid. 7(3), 17–51 (2017). https://doi.org/10.29012/jpc.v7i3.405

  15. Mironov, I.: Renyi Differential Privacy (2017). https://arxiv.org/pdf/1702.07476.pdf

  16. Bun, M., Steinke, T.: Concentrated differential privacy: simplifications, extensions, and lower bounds (2016). https://arxiv.org/abs/1605.02065

  17. Gopi, S., Gulhane, P., Kulkarni, J., Hanwen Shen, J., Shokouhi, M., Yekhanin, S.: Differentially private set union. arXiv preprint arXiv:2002.09745 (2020)

  18. Amin, K., Gillenwater, J., Joseph, M., Kulesza, A., Vassilvitskii, S.: Plume: differential privacy at scale. arXiv:2201.11603 (2022)

  19. Rogers, R., et al.: LinkedIn’s audience engagements API: a privacy preserving data analytics system at scale. J. Priv. Confid. 11(3) (2021). https://doi.org/10.29012/jpc.782

  20. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(34), 211407 (2013). https://doi.org/10.1561/0400000042. ISSN 1551-305X

  21. Vadhan, S.: The complexity of differential privacy. In: Tutorials on the Foundations of Cryptography. ISC, pp. 347–450. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57048-8_7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Podsevalov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Podsevalov, I., Podsevalov, A., Korkhov, V. (2022). Differential Privacy for Statistical Data of Educational Institutions. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13380. Springer, Cham. https://doi.org/10.1007/978-3-031-10542-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10542-5_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10541-8

  • Online ISBN: 978-3-031-10542-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics