Skip to main content

Non-symmetric Number Triangles Arising from Hypercomplex Function Theory in \(\mathbb {R}^{n+1}\)

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Abstract

The paper is focused on intrinsic properties of a one-parameter family of non-symmetric number triangles \(\mathcal {T}(n),\;n \ge 2,\) which arises in the construction of hyperholomorphic Appell polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Askey, R.: Vietoris’s inequalities and hypergeometric series. In: Milovanović, G.V. (ed.) Recent Progress in Inequalities, pp. 63–76. Kluwer Academic Publishers, Dordrecht (1998)

    Chapter  MATH  Google Scholar 

  2. Boros, C., Moll, V.: Irresistible Integrals: Symbolics. Analysis and Experiments in the Evaluation of Integrals. Cambridge University Press, Cambridge, England (2004)

    Google Scholar 

  3. Cação, I., Falcão, M.I., Malonek, H.R.: Hypercomplex polynomials, Vietoris’ rational numbers and a related integer numbers sequence. Complex Anal. Oper. Theory 11, 1059–1076 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cação, I., Falcão, M.I., Malonek, H.R.: On generalized Vietoris’ number sequences. Discrete App. Math. 269, 77–85 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cação, I., Falcão, M.I., Malonek, H.R., Tomaz, G.: Some remarkable combinatorial relations based on methods of hypercomplex function theory. In: Simsek, Y., et al. (eds.) Proceedings Book of the 2nd Mediterranean International Conference of Pure & Applied Mathematics and Related Areas (MICOPAM2019), pp. 72–77. Université d’Evry/Université Paris-Saclay, Evry, Paris (2019)

    Google Scholar 

  6. Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions: A Function Theory for the Dirac Operator. Mathematics and its Applications, vol. 53, Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  7. Falcão, M.I., Cruz, J., Malonek, H.R.: Remarks on the generation of monogenic functions. In: 17th International Conference on the Appl. of Computer Science and Mathematics on Architecture and Civil Engineering. Weimar (2006)

    Google Scholar 

  8. Falcão, M.I., Malonek, H.R.: A note on a one-parameter family of non-symmetric number triangles. Opuscula Math. 32(4), 661–673 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gürlebeck, K., Habetha, K., Sprößig, W.: Application of Holomorphic Functions in Two or Higher Dimensions. Birkhäuser Verlag, Basel (2016)

    Book  MATH  Google Scholar 

  10. Koshy, T.: Fibonacci and Lucas Numbers with Applications, Volume 2 (Pure and Applied Mathematics: A Wiley Series of Texts, Monographs, and Tracts). Wiley, USA (2019)

    Google Scholar 

  11. Malonek, H.R., Cação, I., Falcão, M.I., Tomaz, G.: Harmonic analysis and hypercomplex function theory in co-dimension one. In: Karapetyants, A., Kravchenko, V., Liflyand, E. (eds.) OTHA 2018. SPMS, vol. 291, pp. 93–115. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26748-3_7

  12. Ruscheweyh, S., Salinas, L.: Stable functions and Vietoris’ theorem. J. Math. Anal. Appl. 291, 596–604 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Stanley, R.P.: Catalan Numbers. Cambridge University Press, USA (2015)

    Book  MATH  Google Scholar 

  14. Vietoris, L.: Über das Vorzeichen gewisser trigonometrischer Summen. Sitzungsber. Österr. Akad. Wiss. 167, 125–135 (1958). (in German)

    Google Scholar 

Download references

Acknowledgement

This work was supported by Portuguese funds through the CMAT – Research Centre of Mathematics of University of Minho – and through the CIDMA – Center of Research and Development in Mathematics and Applications (University of Aveiro) – and the Portuguese Foundation for Science and Technology (“FCT – Fundação para a Ciência e Tecnologia”), within projects UIDB/00013/2020, UIDP/00013/2020, UIDB/04106/2020, and UIDP/04106/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graça Tomaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cação, I., Falcão, M.I., Malonek, H.R., Tomaz, G. (2022). Non-symmetric Number Triangles Arising from Hypercomplex Function Theory in \(\mathbb {R}^{n+1}\). In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13377. Springer, Cham. https://doi.org/10.1007/978-3-031-10536-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10536-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10535-7

  • Online ISBN: 978-3-031-10536-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics