Abstract
At first glance, mathematics and language are very different academic disciplines. The mathematical method alternates between induction and deduction in the pursuit of a logical conclusion, whereas the linguistic method is hermeneutic and thus oriented toward understanding, in the way of making the meaning accessible. And while mathematics deals with independent abstract structures, the—e.g., literary—hermeneutics addresses texts or literature, focusing on the task of interpretation. Yet a closer look at these two disciplines reveals certain similarities. Creative work and reasoning are an essential part of mathematics and linguistics alike—in fact, grammar was originally considered a mathematical discipline. These differences and similarities each inspire intriguing practical approaches to interdisciplinary mathematics teaching, with the use of literature in mathematics teaching a key aspect in this regard. This paper will establish a theoretical approach and discuss practical examples that have been tested in a school environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aharoni, R. (2015). Mathematics, poetry and beauty. Singapure: World Scientific Publishing Co. Pte Ltd. ISBN 978-9814602945
Appelbaum, S. (1995). Great German poems of the romantic era: A dual language book. Mineola: Dover Publications.
Beckmann, A. (1994). Der Schimmelreiter von Theodor Storm als Themenbeispiel für fächerübergreifenden Mathematikunterricht. Mathematik in der Schule, 32(3), 145–156 (1994)
Beckmann, A. (2000). Die literarische Parabel als Ausgangspunkt für fächerübergreifenden Mathematikunterricht. Mathematik Lehren, 99, 59–64 (2000)
Beckmann, A. (2003). Fächerübergreifender Mathematikunterricht, part 1: Ein Modell, Ziele und fachspezifische Diskussion, part 3: Mathematikunterricht in Kooperation mit dem Fach Deutsch, part 4: Mathematikunterricht in Kooperation mit Informatik. Hildesheim, Berlin (Franzbecker). ISBN 3-88120-365-6, ISBN 3-88120-267-2, ISBN 3-88120-368-0
Beckmann, A. (2009a). A conceptual framework for cross-curricular Teaching. In B. Sriraman (Ed.): The Montana Mathematics Enthuisiast – special issue on interdisciplinary teaching. The University of Montana. Retrieved from www.math.umt.edu/TMME/TMMEvol6_supplement1_March2009a.pdf.
Beckmann, A. (2009b). Förderung des Variablenbegriffserwerbs durch fächerübergreifende Stationen zwischen Kunst und Mathematik. MU 55/2, S.20–27.
Brown, A. (1998). Verse and universe: Poems about science and mathematics. Minneapolis, Minnesota (milkweed). ISBN 978-1571314079.
Chang, X. Y., Mei Zhu, T. G. (2016). Mathematics and Poetry (chinese). Shandong: Peoples Publishing House. ISBN 978-7209093439.
Conrady, K. O. (1977). Das große deutsche Gedichtsbuch. Kronberg: Athenäum.
Dove, R. (2016). Collected poems 1974–2000. London, New York: W.W. Norton & Campany Ldt. ISBN 978-0-393-35493-5
Franco, B. (2009). Math poetry. Linking language and math in a fresh way. Tucson: Good Year Book. ISBN 13 978-1-59647-072-9
Fraser, D. (1993). Maths plus literature. Why link the two? Olwen twelve pockets meets the mathemagician. The New Zealand Mathematics Magazine, 30(2), 8–12 (1993)
Gallin, P. & Ruf, U. (1993). Sprache und Mathematik in der Schule. Ein Bericht aus der Praxis. JMD 14(1), 3–33 (1993).
Gallin, P., & Ruf, U. (1999). Ich mache das so! Wie machst du es? Das machen wir ab. Sprache und Mathematik (5./6. Schuljahr). Zürich: Lehrmittelverlag.
Gladkij, A. V., & Mel´cuk, I. A. (1973). Elemente der mathematischen Linguistik. München, Salzburg: Fink Verlag.
Glaz, S. & Growney, J. (2008). Strange attractors: Poems of love and Mathematics. Wellesley MS: AK Peters/CRC Press. ISBN 978-15688-13417.
Gruy, J. (2014). Mathematics across the curriculum: Poetry and the haiku. APMC, 19(2), 38–39.
Humenberger, J., & Reichel, H.-C. (1995). Fundamentale Ideen der Angewandten Mathematik. Mannheim, Wien, Zürich: BI Wissenschaftsverlag.
Jung, W. (1997). Neuere Hermeneutikkonzepte. Methodische Verfahren oder geniale Anschauung?. In K.H. Bogdal (Ed.), Neue Literaturtheorien (pp 159–180). Opladen: Westdeutscher Verlag GmbH)
Kästner, E. (1978). Das Erich Kästner Lesebuch. Zürich: Diogenes.
Kliman, M. (1993). Integrating mathematics and literature in the elementary classroom. Arithmetic Teacher, 318–321.
Lessing, G. E. (1987). Sämtliche gedichte. Stuttgart (reclam).
Lewis, P. (2012). Edgar Allen Poe´s Pie: Math puzzles in classical poems. Boston New York: Harcourt Children Books.
Michelsen, C. (2005). Expanding the domain: Variables and functions in an interdisciplinary context between mathematics and physics. In Beckmann et al. (Ed.), Proceedings of the First International Symposium of Mathematics and its Connections to the Arts and Sciences (pp. 201–214). Hildesheim, Berlin: Franzbecker,
Mudroch, V. (1993). Studie über Interdisziplinarität an Schweizer Hochschulen. In W. Arber (Ed.), Interdisciplinarité – pourquoi? – comment? (pp. 147–158). Sion/Valais: Institut Kurt Bösch
Paefgen, E. K. (1999). Einführung in die Literaturdidaktik. Stuttgart, Weimar: Mettler.
Queneau, R. (2012). Exercises in style. New York: New Direction Books.
Radbruch, K. (1997). Mathematische spuren in der literatur. Darmstadt: Wissenschaftliche Buchgesellschaft.
Roubaud, J. (1998). L´Oulipo et les lumières – Oulipo und die Aufklärung. Paris, Tübingen: Le divan.
Sriraman, B. (2009). Mathematics and Literature (The sequel) – Imagination as a pathway to advanced mathematical ideas and Philosophy. In B. Sriraman, V. Freiman, & N. Lirette-Pitre (Eds.), Interdisciplinarity, creativity and learning (pp. 41–54). Charlotte NC: Information Age Publishing , INC.
Stewart, I. (1995). Die reise nach pentagonien. Heidelberg, Berlin, Oxford: Spektr. Akad. Verlag.
Stewart, I. (1997). Die gekämmte Kugel. Heidelberg, Berlin, Oxford: Spektr. Akad. Verlag.
Villani, C. (2020). Mathematics is the poetry of science. Oxford: University press; translation: malcom debevoise.
Villeneuve, C. (2011). Rudolph Steiner: The british connection. Elements from his early life and cultural development. RH185ES: Temple Lodge Publishing. ISBN 978 1 906999 29 2.
Wagenschein, M. (1980). Physikalismus und Sprache. Gegen die Nichtachtung des Unmessbaren und Unmittelbaren. In G. Schäfer, & W. Loch (Eds..), Kommunikative Grundlagen des naturwissenschaftlichen Unterrichts. Weinheim, Basel: Beltz.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Beckmann, A. (2022). Mathematics, Language, and Literature in Interdisciplinary Education—Theoretical Approach and Practical Examples. In: Michelsen, C., Beckmann, A., Freiman, V., Jankvist, U.T., Savard, A. (eds) Mathematics and Its Connections to the Arts and Sciences (MACAS). Mathematics Education in the Digital Era, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-031-10518-0_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-10518-0_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10517-3
Online ISBN: 978-3-031-10518-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)