Abstract
In mathematics, students learn about vectors and translation, and in physics, they model forces, speed, acceleration, etc., with vectors and study movements of translation. Do they make the connection between these concepts introduced in different disciplines or do they put things in separate boxes? In this paper, we will start with some partial considerations on the history of vectors and we will give some references. Then, we will show some examples of naïve illustrations of vectors from physics in mathematics textbooks. We will then present a non-conventional example and the difficulties it created for both mathematics and physics teachers. Finally, we will develop an example of a possible collaboration between teachers of both disciplines in relation to movement of translation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
He analyzed textbooks of last year of lower secondary and first year of upper secondary (age 15–16 years old) which is when vectors are introduced in the mathematics curriculum in France, while forces and velocity are introduced only in the two first years of upper secondary school.
References
Argand, J. R. (1806). Essai sur une manière de représenter les quantités imaginaires, dans les constructions géométriques. Annales De Mathématiques, 4, 134–147.
Ba, C. (2007). Etude épistémologique et didactique de l’utilisation des vecteurs en physique et en mathématiques. Thèse de doctorat - Université Claude Bernard—Lyon 1 et Université Cheikh Anta Diop—Dakar.
Ba, C., & Dorier, J.-L. (2014). The teaching of vectors in mathematics and physics in France during the 20th century. Journal of Innovative Technology and Education, 1(1), 1–10.
Ba, C., & Dorier, J.-L. (2011). Die Entwicklung der Vektorrechnung im französischen Mathematikunterricht seit Ende des 19 Jahrhunderts. Mathematik in Der Lehre, 58, 215–232.
Ba, C., & Dorier, J.-L. (2010). The teaching of vectors in mathematics and physics in France during the 20th century. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Azarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education—CERME6 (pp. 2682–2691). Lyon: Editions INRP. http://www.inrp.fr/editions/editions-electroniques/cerme6.
Ba, C., & Dorier, J.-L. (2007). Liens entre mouvement de translation et translation mathématique : Une proposition pour un cours intégrant physique et mathématiques. Repères IREM, 69, 81–93.
Ba, C., & Dorier, J.-L. (2006). Aperçu historique de l’évolution de l’enseignement des vecteurs en France depuis la fin du XIXème siècle. l’Ouvert, 113, 17–30.
Beckmann, A., Michelsen, C., & Sriraman, B. (Eds.). (2005). Proceedings of the First International Symposium of Mathematics and its Connections to the Arts and Sciences. Berlin: Franzbecker.
Châtelet, G. (1993). Les enjeux du mobile. Seuil.
Crowe, M. J. (1967). A history of vector analysis: The evolution of the idea of a vectorial system. Notre Dame: University Press. Reed.1985. New-York: Dover.
Dorier, J.-L. (2005). An introduction to mathematical modelling—An experiment with students in economics. In M. Bosch (Ed.), e-Proceedings of CERME4 (pp. 1634–1644). http://www.ermeweb.free.fr/CERME4/.
Dorier, J.-L. (Ed.). (2000). On the teaching of linear algebra. Kluwer.
Dorier, J.-L. (1998). The role of formalism in the teaching of the theory of vector spaces. Linear Algebra and Its Applications, 275–276, 141–160.
Dorier, J.-L. (1996). Basis and Dimension, from Grassmann to van der Waerden. In G. Schubring (Ed.), Hermann Günther Grassmann (1809–1877): Visionnary Mathematician, Scientist and Neohumanist Scholar -Papers from a Sesquicentinnial Conference (pp. 175–196). Kluwer.
Dorier, J.-L. (1995). A general outline of the genesis of vector space theory. Historia Mathematica, 22(3), 227–261.
Gasser, J.-L. (1996). Mathématiques et sciences physiques: Translations et rotations. Repères-IREM, 25, 19–34.
Genin, C., Michaud-Bonnet, J., & Pellet, A. (1987). Représentation des élèves en mathématiques et en physique sur les vecteurs et les grandeurs vectorielles lors de transition collège-lycée. Petit x, 14(15), 39–63.
Grassmann, H. G. (1844). Die lineale Ausdehnungslehre. Leipzig: Otto Wigand. English translations are taken from [Hermann Grassmann, A new branch of mathematics. The Ausdehnungslehre of 1844 and other works, trans. Lloyd C. Kannenberg, 1995, Chicago: La Salle: Open court].
Höfer, T., & Beckmann, A. (2009). Supporting mathematical literacy: Examples from a cross-curricular project. ZDM Mathematics Education, 41, 223–230.
Leibniz, G. W. (1850). Leibnizens Mathematische Schriften, ed. C. I. Gerhardt, 2 vols. Berlin: Julius Pressner. Reed. (1853). Œuvres Mathématiques de Leibniz, Paris: Librairie de A. Frank.
Lounis, A. (1989). L’introduction aux modèles vectoriels en physique et en mathématiques : conceptions et difficultés des élèves, essai et remediation. Thèse de l’université de Provence Aix-Marseille I.
Roth, W. M. (2020). Interdisciplinary approaches in mathematics education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 415–419). Springer.
Schubring, G. (Ed.). (1996). Hermann Günther Grassmann (1809–1877): Visionnary Mathematician, Scientist and Neohumanist Scholar -Papers from a Sesquicentinnial Conference. Kluwer.
Sriraman, B., Michelsen, C., Beckmann, A., & Freiman, V. (Eds.). (2008). Proceedings of the Second International Symposium of Mathematics and its Connections to the Arts and Sciences. Centre for Science and Mathematics Education, University of Southern Denmark.
Vale, C., Campbell, C., Speldewinde, C., & White, P. (2020). Teaching across subject boundaries in STEM: Continuities in beliefs about learning and teaching. International Journal of Science and Matthematics Education, 18, 463–483.
Wallis, J. (1673). Algebra. London (see extracts pp. 46–54, in Smith, D. E. (1959). A source book in mathematics. Dover.
Williams, J., Roth, W.-M., Swanson, D., Doig, B., Groves, S., Omuvwie, M., Borromeo Ferri, R., & Mousoulides, N. (2016). Interdisciplinary mathematics education—A state of the Art, ICME13 Topical surveys. Springer Open. https://doi.org/10.1007/2F978-3-319-42267-1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Dorier, JL. (2022). Some Didactical Issues About the Teaching of Vectors and Translations in Mathematics and Physics Based on a Historical Approach. In: Michelsen, C., Beckmann, A., Freiman, V., Jankvist, U.T., Savard, A. (eds) Mathematics and Its Connections to the Arts and Sciences (MACAS). Mathematics Education in the Digital Era, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-031-10518-0_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-10518-0_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10517-3
Online ISBN: 978-3-031-10518-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)