Skip to main content

Some Didactical Issues About the Teaching of Vectors and Translations in Mathematics and Physics Based on a Historical Approach

  • Chapter
  • First Online:
Mathematics and Its Connections to the Arts and Sciences (MACAS)

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 19))

  • 598 Accesses

Abstract

In mathematics, students learn about vectors and translation, and in physics, they model forces, speed, acceleration, etc., with vectors and study movements of translation. Do they make the connection between these concepts introduced in different disciplines or do they put things in separate boxes? In this paper, we will start with some partial considerations on the history of vectors and we will give some references. Then, we will show some examples of naïve illustrations of vectors from physics in mathematics textbooks. We will then present a non-conventional example and the difficulties it created for both mathematics and physics teachers. Finally, we will develop an example of a possible collaboration between teachers of both disciplines in relation to movement of translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    He analyzed textbooks of last year of lower secondary and first year of upper secondary (age 15–16 years old) which is when vectors are introduced in the mathematics curriculum in France, while forces and velocity are introduced only in the two first years of upper secondary school.

References

  • Argand, J. R. (1806). Essai sur une manière de représenter les quantités imaginaires, dans les constructions géométriques. Annales De Mathématiques, 4, 134–147.

    Google Scholar 

  • Ba, C. (2007). Etude épistémologique et didactique de l’utilisation des vecteurs en physique et en mathématiques. Thèse de doctorat - Université Claude Bernard—Lyon 1 et Université Cheikh Anta Diop—Dakar.

    Google Scholar 

  • Ba, C., & Dorier, J.-L. (2014). The teaching of vectors in mathematics and physics in France during the 20th century. Journal of Innovative Technology and Education, 1(1), 1–10.

    Google Scholar 

  • Ba, C., & Dorier, J.-L. (2011). Die Entwicklung der Vektorrechnung im französischen Mathematikunterricht seit Ende des 19 Jahrhunderts. Mathematik in Der Lehre, 58, 215–232.

    Google Scholar 

  • Ba, C., & Dorier, J.-L. (2010). The teaching of vectors in mathematics and physics in France during the 20th century. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Azarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education—CERME6 (pp. 2682–2691). Lyon: Editions INRP. http://www.inrp.fr/editions/editions-electroniques/cerme6.

  • Ba, C., & Dorier, J.-L. (2007). Liens entre mouvement de translation et translation mathématique : Une proposition pour un cours intégrant physique et mathématiques. Repères IREM, 69, 81–93.

    Google Scholar 

  • Ba, C., & Dorier, J.-L. (2006). Aperçu historique de l’évolution de l’enseignement des vecteurs en France depuis la fin du XIXème siècle. l’Ouvert, 113, 17–30.

    Google Scholar 

  • Beckmann, A., Michelsen, C., & Sriraman, B. (Eds.). (2005). Proceedings of the First International Symposium of Mathematics and its Connections to the Arts and Sciences. Berlin: Franzbecker.

    Google Scholar 

  • Châtelet, G. (1993). Les enjeux du mobile. Seuil.

    Google Scholar 

  • Crowe, M. J. (1967). A history of vector analysis: The evolution of the idea of a vectorial system. Notre Dame: University Press. Reed.1985. New-York: Dover.

    Google Scholar 

  • Dorier, J.-L. (2005). An introduction to mathematical modelling—An experiment with students in economics. In M. Bosch (Ed.), e-Proceedings of CERME4 (pp. 1634–1644). http://www.ermeweb.free.fr/CERME4/.

  • Dorier, J.-L. (Ed.). (2000). On the teaching of linear algebra. Kluwer.

    Google Scholar 

  • Dorier, J.-L. (1998). The role of formalism in the teaching of the theory of vector spaces. Linear Algebra and Its Applications, 275–276, 141–160.

    Article  Google Scholar 

  • Dorier, J.-L. (1996). Basis and Dimension, from Grassmann to van der Waerden. In G. Schubring (Ed.), Hermann Günther Grassmann (1809–1877): Visionnary Mathematician, Scientist and Neohumanist Scholar -Papers from a Sesquicentinnial Conference (pp. 175–196). Kluwer.

    Chapter  Google Scholar 

  • Dorier, J.-L. (1995). A general outline of the genesis of vector space theory. Historia Mathematica, 22(3), 227–261.

    Article  Google Scholar 

  • Gasser, J.-L. (1996). Mathématiques et sciences physiques: Translations et rotations. Repères-IREM, 25, 19–34.

    Google Scholar 

  • Genin, C., Michaud-Bonnet, J., & Pellet, A. (1987). Représentation des élèves en mathématiques et en physique sur les vecteurs et les grandeurs vectorielles lors de transition collège-lycée. Petit x, 14(15), 39–63.

    Google Scholar 

  • Grassmann, H. G. (1844). Die lineale Ausdehnungslehre. Leipzig: Otto Wigand. English translations are taken from [Hermann Grassmann, A new branch of mathematics. The Ausdehnungslehre of 1844 and other works, trans. Lloyd C. Kannenberg, 1995, Chicago: La Salle: Open court].

    Google Scholar 

  • Höfer, T., & Beckmann, A. (2009). Supporting mathematical literacy: Examples from a cross-curricular project. ZDM Mathematics Education, 41, 223–230.

    Article  Google Scholar 

  • Leibniz, G. W. (1850). Leibnizens Mathematische Schriften, ed. C. I. Gerhardt, 2 vols. Berlin: Julius Pressner. Reed. (1853). Œuvres Mathématiques de Leibniz, Paris: Librairie de A. Frank.

    Google Scholar 

  • Lounis, A. (1989). L’introduction aux modèles vectoriels en physique et en mathématiques : conceptions et difficultés des élèves, essai et remediation. Thèse de l’université de Provence Aix-Marseille I.

    Google Scholar 

  • Roth, W. M. (2020). Interdisciplinary approaches in mathematics education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 415–419). Springer.

    Chapter  Google Scholar 

  • Schubring, G. (Ed.). (1996). Hermann Günther Grassmann (1809–1877): Visionnary Mathematician, Scientist and Neohumanist Scholar -Papers from a Sesquicentinnial Conference. Kluwer.

    Google Scholar 

  • Sriraman, B., Michelsen, C., Beckmann, A., & Freiman, V. (Eds.). (2008). Proceedings of the Second International Symposium of Mathematics and its Connections to the Arts and Sciences. Centre for Science and Mathematics Education, University of Southern Denmark.

    Google Scholar 

  • Vale, C., Campbell, C., Speldewinde, C., & White, P. (2020). Teaching across subject boundaries in STEM: Continuities in beliefs about learning and teaching. International Journal of Science and Matthematics Education, 18, 463–483.

    Google Scholar 

  • Wallis, J. (1673). Algebra. London (see extracts pp. 46–54, in Smith, D. E. (1959). A source book in mathematics. Dover.

    Google Scholar 

  • Williams, J., Roth, W.-M., Swanson, D., Doig, B., Groves, S., Omuvwie, M., Borromeo Ferri, R., & Mousoulides, N. (2016). Interdisciplinary mathematics education—A state of the Art, ICME13 Topical surveys. Springer Open. https://doi.org/10.1007/2F978-3-319-42267-1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Dorier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dorier, JL. (2022). Some Didactical Issues About the Teaching of Vectors and Translations in Mathematics and Physics Based on a Historical Approach. In: Michelsen, C., Beckmann, A., Freiman, V., Jankvist, U.T., Savard, A. (eds) Mathematics and Its Connections to the Arts and Sciences (MACAS). Mathematics Education in the Digital Era, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-031-10518-0_19

Download citation

Publish with us

Policies and ethics