Skip to main content

Child with Global Developmental Delay

  • Chapter
  • First Online:
Symptom-Based Approach to Pediatric Neurology

Abstract

Global developmental delay (GDD) is a common finding in the pediatric population and is found in 1–3% of children under the age of 5 years. GDD is etiologically diverse. A comprehensive assessment with thorough history and physical examination can help determine the next best diagnostic steps for evaluating these patients. Up to 25–50% of children with GDD will have an identified genetic etiology. Specific guidelines exist for recommended genetic testing in this population, though these are likely to change with recent advances in genetic medicine. Early diagnosis of GDD and identification of the specific etiology can help improve outcomes in many cases, allowing for earlier therapeutic intervention and identifying other associated health issues that may be subsequently managed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moeschler JB, Shevell M, Committee on Genetics. Comprehensive evaluation of the child with intellectual disability or global developmental delays. Pediatrics. 2014;134(3):e903–18.

    Article  Google Scholar 

  2. Brown KA, Parikh S, Patel DR. Understanding basic concepts of developmental diagnosis in children. Transl Pediatr. 2020;9(Suppl 1):S9–22.

    Article  Google Scholar 

  3. Shevell M, Ashwal S, Donley D, Flint J, Gingold M, Hirtz D, et al. Practice parameter: evaluation of the child with global developmental delay: report of the quality standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2003;60(3):367–80.

    Article  CAS  Google Scholar 

  4. American Psychiatric Association. Intellectual disabilities [Internet]. 2013. https://www.psychiatry.org/psychiatrists/practice/dsm/educational-resources/dsm-5-fact-sheets.

  5. Chen I-C, Chen C-L, Wong M-K, Chung C-Y, Chen C-H, Sun C-H. Clinical analysis of 1048 children with developmental delay. Chang Gung Med J. 2002;25(11):743–50.

    Google Scholar 

  6. Srour M, Mazer B, Shevell MI. Analysis of clinical features predicting etiologic yield in the assessment of global developmental delay. Pediatrics. 2006;118(1):139–45.

    Article  Google Scholar 

  7. Han JY, Jang W, Park J, Kim M, Kim Y, Lee IG. Diagnostic approach with genetic tests for global developmental delay and/or intellectual disability: single tertiary center experience. Ann Hum Genet. 2019;83(3):115–23.

    Article  CAS  Google Scholar 

  8. Mithyantha R, Kneen R, McCann E, Gladstone M. Current evidence-based recommendations on investigating children with global developmental delay. Arch Dis Child. 2017;102(11):1071–6.

    Article  Google Scholar 

  9. Maulik PK, Mascarenhas MN, Mathers CD, Dua T, Saxena S. Prevalence of intellectual disability: a meta-analysis of population-based studies. Res Dev Disabil. 2011;32(2):419–36.

    Article  Google Scholar 

  10. Jimenez-Gomez A, Standridge SM. A refined approach to evaluating global developmental delay for the international medical community. Pediatr Neurol. 2014;51(2):198–206.

    Article  Google Scholar 

  11. Liao L-H, Chen C, Peng J, Wu L-W, He F, Yang L-F, et al. Diagnosis of intellectual disability/global developmental delay via genetic analysis in a central region of China. Chin Med J. 2019;132(13):1533–40.

    Article  CAS  Google Scholar 

  12. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–64.

    Article  CAS  Google Scholar 

  13. Miclea D, Peca L, Cuzmici Z, Pop IV. Genetic testing in patients with global developmental delay/intellectual disabilities. A review. Clujul Med. 2015;88(3):288–92.

    Google Scholar 

  14. de Ligt J, Willemsen MH, van Bon BWM, Kleefstra T, Yntema HG, Kroes T, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012;367(20):1921–9.

    Article  Google Scholar 

  15. Hamdan FF, Srour M, Capo-Chichi J-M, Daoud H, Nassif C, Patry L, et al. De novo mutations in moderate or severe intellectual disability. PLoS Genet. 2014;10(10):e1004772.

    Article  Google Scholar 

  16. The Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes of developmental disorders. Nature. 2015;519(7542):223–8.

    Article  Google Scholar 

  17. Hersh JH, Saul RA, Committee on Genetics. Health supervision for children with fragile X syndrome. Pediatrics. 2011;127(5):994–1006.

    Article  Google Scholar 

  18. Sempere A, Arias A, Farré G, García-Villoria J, Rodríguez-Pombo P, Desviat LR, et al. Study of inborn errors of metabolism in urine from patients with unexplained mental retardation. J Inherit Metab Dis. 2010;33(1):1–7.

    Article  CAS  Google Scholar 

  19. Engbers HM, Berger R, van Hasselt P, de Koning T, de Sain-van der Velden MGM, Kroes HY, et al. Yield of additional metabolic studies in neurodevelopmental disorders. Ann Neurol. 2008;64(2):212–7.

    Article  Google Scholar 

  20. Papavasiliou AS, Bazigou H, Paraskevoulakos E, Kotsalis C. Neurometabolic testing in developmental delay. J Child Neurol. 2000;15(9):620–2.

    Article  CAS  Google Scholar 

  21. Srour M, Shevell M. Genetics and the investigation of developmental delay/intellectual disability. Arch Dis Child. 2014;99(4):386–9.

    Article  Google Scholar 

  22. Lehner DC, Sadler LS. Toddler developmental delays after extensive hospitalization: primary care practitioner guidelines. Pediatr Nurs. 2015;41(5):236–42.

    Google Scholar 

  23. US Department of Health and Human Services. Toxicological profile for lead. North Charleston: Createspace Independent Publishing Platform; 2014.

    Google Scholar 

  24. American Academy of Pediatrics Committee on Environmental Health. Lead exposure in children: prevention, detection, and management. Pediatrics. 2005;116(4):1036–46.

    Article  Google Scholar 

  25. Stoltzfus RJ. Iron-deficiency anemia: reexamining the nature and magnitude of the public health problem. Summary: implications for research and programs. J Nutr. 2001;131(2S-2):697S–700S; discussion 700S–701S.

    Article  CAS  Google Scholar 

  26. Saloojee H, Pettifor JM. Iron deficiency and impaired child development. BMJ. 2001;323(7326):1377–8.

    Article  CAS  Google Scholar 

  27. Firth HV, Hurst JA, editors. Congenital hypothyroidism. In: Oxford desk reference: clinical genetics and genomics. 2nd ed. London: Oxford University Press; 2017. p. 116–8.

    Google Scholar 

  28. Bélanger SA, Caron J. Evaluation of the child with global developmental delay and intellectual disability. Paediatr Child Health. 2018;23(6):403–19.

    Article  Google Scholar 

  29. Silove N, Collins F, Ellaway C. Update on the investigation of children with delayed development: investigation of developmental delay. J Paediatr Child Health. 2013;49(7):519–25.

    Article  Google Scholar 

  30. Naughton AM, Maguire SA, Mann MK, Lumb RC, Tempest V, Gracias S, et al. Emotional, behavioral, and developmental features indicative of neglect or emotional abuse in preschool children: a systematic review: a systematic review. JAMA Pediatr. 2013;167(8):769–75.

    Article  Google Scholar 

  31. McDonald JL, Milne S, Knight J, Webster V. Developmental and behavioural characteristics of children enrolled in a child protection pre-school: child development in maltreatment. J Paediatr Child Health. 2013;49(2):E142–6.

    Article  Google Scholar 

  32. Murias K, Moir A, Myers KA, Liu I, Wei X-C. Systematic review of MRI findings in children with developmental delay or cognitive impairment. Brain Dev. 2017;39(8):644–55.

    Article  Google Scholar 

  33. Presson AP, Partyka G, Jensen KM, Devine OJ, Rasmussen SA, McCabe LL, et al. Current estimate of Down Syndrome population prevalence in the United States. J Pediatr. 2013;163(4):1163–8.

    Article  Google Scholar 

  34. Jones KL, Jones MC, del Campo M, editors. Recognizable patterns of malformation. In: Smith’s recognizable patterns of human malformation: Expert consult—online and print. 7th ed. London: W B Saunders; 2013. p. 7–23.

    Google Scholar 

  35. Flore LA, Milunsky JM. Updates in the genetic evaluation of the child with global developmental delay or intellectual disability. Semin Pediatr Neurol. 2012;19(4):173–80.

    Article  Google Scholar 

  36. Firth HV, Hurst JA, editors. Fragile X syndrome (FRAX). In: Oxford desk reference: clinical genetics and genomics. 2nd ed. London: Oxford University Press; 2017. p. 424–6.

    Google Scholar 

  37. Vissers LELM, Gilissen C, Veltman JA. Genetic studies in intellectual disability and related disorders. Nat Rev Genet. 2016;17(1):9–18.

    Article  CAS  Google Scholar 

  38. Eun S-H, Hahn SH. Metabolic evaluation of children with global developmental delay. Korean J Pediatr. 2015;58(4):117–22.

    Article  Google Scholar 

  39. Committee on Children with Disabilities. Developmental surveillance and screening of infants and young children. Pediatrics. 2001;108(1):192–6.

    Article  Google Scholar 

  40. Riou EM, Ghosh S, Francoeur E, Shevell MI. Global developmental delay and its relationship to cognitive skills. Dev Med Child Neurol. 2009;51(8):600–6.

    Article  Google Scholar 

  41. Hoyme HE. Minor malformations. Am J Dis Child. 1987;141:947.

    Article  CAS  Google Scholar 

  42. Firth HV, Hurst JA, editors. Coarse facial features. In: Oxford desk reference: clinical genetics and genomics. 2nd ed. London: Oxford University Press; 2017. p. 106–8.

    Google Scholar 

  43. Lisi EC, Cohn RD. Genetic evaluation of the pediatric patient with hypotonia: perspective from a hypotonia specialty clinic and review of the literature: review. Dev Med Child Neurol. 2011;53(7):586–99.

    Article  Google Scholar 

  44. Schaefer GB, Bodensteiner JB. Radiological findings in developmental delay. Semin Pediatr Neurol. 1998;5(1):33–8.

    Article  CAS  Google Scholar 

  45. van Karnebeek CDM, Jansweijer MCE, Leenders AGE, Offringa M, Hennekam RCM. Diagnostic investigations in individuals with mental retardation: a systematic literature review of their usefulness. Eur J Hum Genet. 2005;13(1):6–25.

    Article  Google Scholar 

  46. Tremblay I, Janvier A, Laberge A-M. Paediatricians underuse recommended genetic tests in children with global developmental delay. Paediatr Child Health. 2018;23(8):e156–62.

    Article  Google Scholar 

  47. Borch LA, Parboosingh J, Thomas MA, Veale P. Re-evaluating the first-tier status of fragile X testing in neurodevelopmental disorders. Genet Med. 2020;22(6):1036–9.

    Article  Google Scholar 

  48. Weinstein V, Tanpaiboon P, Chapman KA, Ah Mew N, Hofherr S. Do the data really support ordering fragile X testing as a first-tier test without clinical features? Genet Med. 2017;19(12):1317–22.

    Article  Google Scholar 

  49. Stojanovic JR, Miletic A, Peterlin B, Maver A, Mijovic M, Borlja N, et al. Diagnostic and clinical utility of clinical exome sequencing in children with moderate and severe global developmental delay/intellectual disability. J Child Neurol. 2020;35(2):116–31.

    Article  Google Scholar 

  50. Clark MM, Stark Z, Farnaes L, Tan TY, White SM, Dimmock D, et al. Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. npj Genom Med [Internet]. 2018;3(1). https://doi.org/10.1038/s41525-018-0053-8

  51. Wetterstrand KA. DNA sequencing costs: data from the NHGRI genome sequencing program (GSP) [Internet]. Genome.gov. [cited 2020 Dec 18]. http://www.genome.gov/sequencingcostsdata.

  52. Srivastava S, Love-Nichols JA, Dies KA, Ledbetter DH, Martin CL, Chung WK, et al. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet Med. 2019;21(11):2413–21.

    Article  Google Scholar 

  53. Cloet E, Leys M, De Meirleir L. Access to early diagnostics, intervention, and support for children with a neurobiological developmental delay or disorder. Dev Med Child Neurol. 2017;59(12):1215–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh Anne Flore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flore, L.A., Campbell, S. (2022). Child with Global Developmental Delay. In: Kamat, D.M., Sivaswamy, L. (eds) Symptom-Based Approach to Pediatric Neurology . Springer, Cham. https://doi.org/10.1007/978-3-031-10494-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10494-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10493-0

  • Online ISBN: 978-3-031-10494-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics