Skip to main content

Automatic Classification of Felsic, Mafic, and Ultramafic Rocks in Satellite Images from Palmira and La Victoria, Colombia

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 507))

Included in the following conference series:

Abstract

Manually inspecting and analyzing satellite images can lead to numerous errors and is quite time consuming. Our geological contribution is to offer a means for the automatic classification of areas with felsic, mafic, and ultramafic rocks via machine learning using satellite images from Palmira and La Victoria, Colombia. Specifically, this study focuses on two types of satellite images taken from the Earth Observation System (EOS), namely natural color (bands B04 B03 B02) and infrared color vegetation (B08 B04 B03). The following machine learning algorithms were used in this study: Random Forest, K-Nearest Neighbors, Support Vector Machines, Logistic Regression, and Multilayer Perceptron. The model generated with K-Nearest Neighbors performed best for classifying natural color images with an accuracy of 91%, a precision of 87%, and a recall of 88%. Random Forest was the best model for classifying infrared images with an overall accuracy of 83%, a precision of 31%, and a recall of 31%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://eos.com/products/landviewer/

  2. 2.

    https://github.com/SBosq/MUFRocks/tree/main/Colombia_Geo.

  3. 3.

    https://github.com/SBosq/MUFRocks/tree/main/InitialImages.

  4. 4.

    https://github.com/SBosq/MUFRocks/blob/main/OSGDAL/main.py.

  5. 5.

    https://github.com/SBosq/MUFRocks/tree/main/neighbortest.

References

  1. Earth Observing Data Analytics Inc.: EOS LandViewer: browse real-time Earth observation (2021). https://eos.com/products/landviewer/

  2. Asokan, A., Anitha, J.: Machine learning based image processing techniques for satellite image analysis—a survey. In: 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon) (2019)

    Google Scholar 

  3. Baghdadi, N., Zribi, M., Mallet, C.: QGIS and Generic Tools. ISTE LTD. ISBN: 978-1-78630-187-1 (2018)

    Google Scholar 

  4. Bérubé, C.L., et al.: Predicting rock type and detecting hydrothermal alteration using machine learning and petrophysical properties of the Canadian malartic ore and host rocks, Pontiac Subprovince, Québec, Canada. Ore Geol. Rev. 96, 130–145 (2018)

    Article  Google Scholar 

  5. Chakouri, M.: Geological and mineralogical mapping in Moroccan central Jebilet using multispectral and hyperspectral satellite data and machine learning. Int. J. Adv. Trends Comput. Sci. Eng. 9(4), 5772–5783 (2020)

    Article  Google Scholar 

  6. Lu, D., Weng, Q.: A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 28(5), 823–870 (2007). https://www.tandfonline.com/doi/pdf/10.1080/01431160600746456?needAccess=true

  7. Dhingra, S., Kumar, D.: A review of remotely sensed satellite image classification. Int. J. Electr. Comput. Eng. 9, 1720 (2019)

    Google Scholar 

  8. IBM Cloud Education: What is Random Forest? (2021). https://www.ibm.com/cloud/learn/random-forest

  9. Encyclopedia Britannica: Felsic and mafic rocks - igneous rock (2021). https://www.britannica.com/science/felsic-rock

  10. Garosi, Y., Sheklabadi, M., Conoscenti, C., Pourghasemi, H.R., Oost, K.V.: Assessing the performance of GIS-based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Sci. Total Environ. 664, 1117–1132 (2019)

    Article  Google Scholar 

  11. Gavade, A.B., Rajpurohit, V.S.: Systematic analysis of satellite image-based land cover classification techniques: literature review and challenges. Int. J. Comput. Appl. 43(6), 514–523 (2019)

    Google Scholar 

  12. GDAL/OGR: GDAL/OGR Geospatial Data Abstraction Software Library, Open Source Geospatial Foundation. https://gdal.org (2021)

  13. Geologyin: How to classify igneous rocks into (ultramafic, mafic, intermediate and felsic)? (2021). https://www.geologyin.com/2014/12/how-to-classify-igneous-rocks-into.html

  14. Geron, A.: Hands-on Machine Learning With SciKit-Learn and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media Inc, Sebastopol, CA (2017)

    Google Scholar 

  15. Grosse, R.: Lecture 5: Multilayer perceptrons (2018). http://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/readings/L05%20Multilayer%20Perceptrons.pdf

  16. Liao, X., Huang, X., Huang, W.: ML-LUM: a system for land use mapping by machine learning algorithms. J. Comput. Lang. 54, 100908 (2019)

    Article  Google Scholar 

  17. Nelson, D.: What is a KNN (k-nearest neighbors)? (2020). https://www.unite.ai/what-is-k-nearest-neighbors/

  18. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 3426 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Korstanje, J.: The k-nearest neighbors (kNN) Algorithm in Python (2021). https://realpython.com/knn-python/

  20. Rodríguez Ramos, B.P.: Estudio metalgenético de las mineralizaciones auríferas del área de Ginebra y zonas aledañas, Valle del Cauca Universidad Nacional de Colombia (2012). https://repositorio.unal.edu.co/handle/unal/21336

  21. Tangthaikwan, K., Keeratipranon, N., Agsornintara, A.: Multiclass support vector machine for classification spatial data from satellite image. Multiclass support vector machine for classification spatial data from satellite image (2017)

    Google Scholar 

  22. Pennsylvania State University: 12.1—logistic regression | stat 462 2021 (2021). Available: https://online.stat.psu.edu/stat462/node/207/

  23. Vera Torres, J.A.: RACEFN Glosario de Geología (2009). http://www.ugr.es/~agcasco/personal/rac-geologia/0-rac.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germán H. Alférez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bosquez, S., Alférez, G.H., Ardila, A.M.M., Clausen, B.L. (2022). Automatic Classification of Felsic, Mafic, and Ultramafic Rocks in Satellite Images from Palmira and La Victoria, Colombia. In: Arai, K. (eds) Intelligent Computing. SAI 2022. Lecture Notes in Networks and Systems, vol 507. Springer, Cham. https://doi.org/10.1007/978-3-031-10464-0_36

Download citation

Publish with us

Policies and ethics