Skip to main content

Urban Tree Detection and Species Classification Using Aerial Imagery

  • 222 Accesses

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 507)

Abstract

Trees are essential for climate change adaptation or even mitigation to some extent. To leverage their potential, effective forest and urban tree management is required. Automated tree detection, localisation, and species classification are crucial to any forest and urban tree management plan. Over the last decade, many studies aimed at tree species classification using aerial imagery yet due to several environmental challenges results were sub-optimal. This study aims to contribute to this domain by first, generating a labelled tree species dataset using Google Maps static API to supply aerial images and Trees In Camden inventory to supply species information, GPS coordinates (Latitude and Longitude), and tree diameter. Furthermore, this study investigates how state-of-the-art deep Convolutional Neural Network models including VGG19, ResNet50, DenseNet121, and InceptionV3 can handle the species classification problem of the urban trees using aerial images. Experimental results show our best model, InceptionV3 achieves an average accuracy of 73.54 over 6 tree species.

Keywords

  • Urban tree detection
  • Convolutional Neural Network
  • Aerial imagery

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-10464-0_32
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-10464-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. Baeten, L., Bruelheide, H.: Identifying the tree species compositions that maximize ecosystem functioning in European forests. J. Appl. Ecol. 56(3), 733–744 (2018)

    CrossRef  Google Scholar 

  2. Branson, S., Wegner, J.D., Hall, D., Lang, N., Schindler, K., Perona, P.: From Google Maps to a fine-grained catalog of street trees. ISPRS J. Photogramm. Remote. Sens. 135, 13–30 (2018)

    CrossRef  Google Scholar 

  3. Cao, K., Zhang, X.: An improved Res-UNet model for tree species classification using airborne high-resolution images. Remote Sens. 12(7), 1128 (2020)

    CrossRef  Google Scholar 

  4. Chandler, K., Stevens, C., Binley, A., Keith, A.: Influence of tree species and forest land use on soil hydraulic conductivity and implications for surface runoff generation. Geoderma 310, 120–127 (2017)

    CrossRef  Google Scholar 

  5. London Borough of Camden Council. Trees in Camden: open data portal (May 2021)

    Google Scholar 

  6. Dalponte, M., Frizzera, L., Gianelle, D.: Individual tree crown delineation and tree species classification with hyperspectral and lidar data. PeerJ 6, e6227 (2019)

    CrossRef  Google Scholar 

  7. Donovan, G.H., Landry, S., Winter, C.: Urban trees, house price, and redevelopment pressure in Tampa, Florida. Urban Forest. Urban Greening 38, 330–336 (2019)

    CrossRef  Google Scholar 

  8. Fricker, G.A., Ventura, J.D., Wolf, J.A., North, M.P., Davis, F.W., Franklin, J.: A convolutional neural network classifier identifies tree species in mixed-conifer forest from hyperspectral imagery. Remote Sens. 11(19), 2326 (2019)

    CrossRef  Google Scholar 

  9. Gamfeldt, L., et al.: Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4(1), 1340 (2013). https://doi.org/10.1038/ncomms2328

    CrossRef  Google Scholar 

  10. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  11. Van Hulse, J., Khoshgoftaar, T.M., Napolitano, A.: Experimental perspectives on learning from imbalanced data. In: Proceedings of the 24th International Conference on Machine Learning, ICML 2007, pp. 935–942 (2007). https://doi.org/10.1145/1273496.1273614

  12. Kim, S., Schreuder, G., Mcgaughey, R., Andersen, H.E.: Individual tree species identification using LiDAR intensity data. In: ASPRS 2008 Annual Conference, Portland (2008)

    Google Scholar 

  13. Koch, B., Heyder, U., Weinacker, H.: Detection of individual tree crowns in airborne LiDAR data. Photogram. Eng. Remote Sens. 72(4), 357–363 (2006)

    CrossRef  Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    CrossRef  Google Scholar 

  15. Lang, N.: Deep learning and google maps for tree monitoring (2020)

    Google Scholar 

  16. Li, H., Hu, B., Li, Q., Jing, L.: CNN-based tree species classification using airborne LiDAR data and high-resolution satellite image. In: 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020, pp. 2679–2682. IEEE (2020)

    Google Scholar 

  17. Manickathan, L., Defraeye, T., Allegrini, J., Derome, D., Carmeliet, J.: Parametric study of the influence of environmental factors and tree properties on the transpirative cooling effect of trees. Agric. For. Meteorol. 248, 259–274 (2017)

    CrossRef  Google Scholar 

  18. Maschler, J., Atzberger, C., Immitzer, M.: Individual tree crown segmentation and classification of 13 tree species using airborne hyperspectral data. Remote Sens. 10(8), 1218 (2018)

    CrossRef  Google Scholar 

  19. Natesan, S., Armenakis, C., Vepakomma, U.: ResNet-based tree species classification using UAV images. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. XLII–2/W13, 475–481 (2019)

    CrossRef  Google Scholar 

  20. Natesan, S., Armenakis, C., Vepakomma, U.: Individual tree species identification using dense convolutional network (DenseNet) on multitemporal RGB images from UAV. J. Unmanned Veh. Syst. 8(4), 310–333 (2020)

    CrossRef  Google Scholar 

  21. Nezami, S., Khoramshahi, E., Nevalainen, O., Pölönen, I., Honkavaara, E.: Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks. Remote Sens. 12(7), 1070 (2020)

    CrossRef  Google Scholar 

  22. Nilsson, M.: Estimation of tree heights and stand volume using an airborne LiDAR system. Remote Sens. Environ. 56(1), 1–7 (1996)

    CrossRef  Google Scholar 

  23. Onishi, M., Ise, T.: Automatic classification of trees using a UAV onboard camera and deep learning. arXiv preprint arXiv:1804.10390 (2018)

  24. Rezatec: Satellites vs. Lidar for forestry management? (2020)

    Google Scholar 

  25. Rust, S.: Tree inventory, risk assessment and management. In: Roloff, A. (ed.) Urban Tree Management: For the Sustainable Development of Green Cities, pp. 178–210. Wiley, Gottingen (2016)

    Google Scholar 

  26. Safonova, A., Tabik, S., Alcaraz-Segura, D., Rubtsov, A., Maglinets, Y., Herrera, F.: Detection of fir trees (Abies sibirica) damaged by the bark beetle in unmanned aerial vehicle images with deep learning. Remote Sens. 11(6), 643 (2019)

    CrossRef  Google Scholar 

  27. Saheer, L.B., Shahawy, M.: Self-supervised approach for urban tree recognition on aerial images. In: Proceedings of the 17th International conference on Artificial Intelligence Applications and Innovations (2021)

    Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv arXiv:1409.1556 (2014)

  29. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  30. Wegner, J.D.: Cataloging public objects using aerial and street-level images - urban trees. Accessed 1 May 2020

    Google Scholar 

  31. Wegner, J.D., Branson, S., Hall, D., Schindler, K., Perona, P.: Cataloging public objects using aerial and street-level images-urban trees. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6014–6023 (2016)

    Google Scholar 

  32. Wilkes, P., Disney, M., Vicari, M.B., Calders, K., Burt, A.: Estimating urban above ground biomass with multi-scale LiDAR. Carbon Balance Manage. 13(1), 1–20 (2018). https://doi.org/10.1186/s13021-018-0098-0

    CrossRef  Google Scholar 

  33. Wolf, K.L.: Business district streetscapes, trees, and consumer response. J. Forest. 103(8), 396–400 (2005)

    Google Scholar 

  34. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Maktab Dar Oghaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Oghaz, M.M.D., Saheer, L.B., Zarrin, J. (2022). Urban Tree Detection and Species Classification Using Aerial Imagery. In: Arai, K. (eds) Intelligent Computing. SAI 2022. Lecture Notes in Networks and Systems, vol 507. Springer, Cham. https://doi.org/10.1007/978-3-031-10464-0_32

Download citation