Skip to main content

Estimation of Velocity Field in Narrow Open Channels by a Hybrid Metaheuristic ANFIS Network

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 506))

Included in the following conference series:

Abstract

Owing to the significance of velocity distribution, several laboratory and simulation studies were done on the velocity distribution in open channels. Laboratory and field studies show that the maximum value of velocity through narrow open flumes takes place beneath the water surface knowing as the velocity dip mechanism. This velocity dip is a highly complex feature of flow in narrow channels, and no expression can evaluate it exactly. This study introduces a hybrid Metaheuristic model to estimate the velocity distribution within the narrow open canals. To optimize the linear and nonlinear parameters of adaptive neuro-fuzzy inference systems (ANFIS) models, singular decomposition value (SVD) and genetic algorithm (GA) are employed. In order to increase the flexibility of the model for an optimal design, two different objective functions are used, and the superior optimal point using the Pareto curve is estimated. To evaluate the accuracy of the hybrid ANFIS-GA/SVD model, the velocity distribution in three hydraulic circumstances is compared to the measured values. ANFIS-GA/SVD predicts velocity distribution with reasonable accuracy and estimates the velocity dip value with high precision. The Root Mean Squared Error (RMSE) for depths, D = 0.65 m, D = 0.91 m, and D = 1.19 m is calculated 0.052, 0.044, and 0.053, respectively. According to the numerical model results, the ANFIS-GA/SVD simulated the velocity distribution in depth of D = 0.91 m more accurately than other ones. Also, almost 94%, 96% and 88% predicted velocities for D = 0.65 m, D = 0.91 m, and D = 1.19 m, respectively that are modeled by the ANFIS-GA/SVD algorithm show an error of less than 10% for all measured data in the entire cross-section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schlichting, H.: Boundary Layer Theory, 7th edn. McGraw-Hill book Company (1979)

    Google Scholar 

  2. Cebeci, T.: Analysis of Turbulent Flows, 2nd edn. Elsevier Ltd., Oxford, U.K. (2004)

    Google Scholar 

  3. Kirkgoz, M.S.: Turbulent velocity profiles for smooth and rough open channel flow. J. Hydraul. Eng. 115(11), 1543–1561 (1989)

    Article  Google Scholar 

  4. Keulegan, G.H.: Laws of turbulent flow in open channels. J. National Bureau Stand. 21(6), 707–741 (1938)

    Article  Google Scholar 

  5. Nikuradse, J.: Laws of Flow in Rough Pipes, Tech. Memorandum 1292, National Advisory Committee for Aeronautics, Washington, DC. (1950)

    Google Scholar 

  6. Cardoso, A.H., Graf, W.H., Gust, G.: Uniform flow in a smooth open channel. J. Hydraul. Res. 27(5), 603–616 (1989)

    Article  Google Scholar 

  7. Nezu, I., Nakagawa, H.: Turbulent Open-Channel Flows. CRC Press, Taylor and Francis Group, Balkema, Rotterdam, IAHR Monograph (1993)

    MATH  Google Scholar 

  8. Kirkgoz, M.S., Ardiçlioglu, M.: Velocity profiles of developing and developed open channel flow. J. Hydraul. Eng. 123(12), 1099–1105 (1997)

    Article  Google Scholar 

  9. Coles, D.: The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1(2), 191–226 (1956)

    Article  MathSciNet  Google Scholar 

  10. Nezu, I., Rodi, W.: Open-channel flow measurements with a Laser Doppler Anemometer. J. Hydraul. Eng. 112(5), 335–355 (1986)

    Article  Google Scholar 

  11. Guo, J., Julian, P., Meroney, R.N.: Modified wall wake law for zero pressure gradient turbulent boundary layers. J. Hydraul. Res. 43(4), 421–430 (2005)

    Article  Google Scholar 

  12. Castro-Orgaz, O.: Hydraulics of developing chute flow. J. Hydraul. Res. 47(2), 185–194 (2009)

    Article  Google Scholar 

  13. Yang, S.Q., Tan, S.K., Lim, S.Y.: Velocity distribution and dip phenomenon in smooth uniform open channel flow. J. Hydraul. Eng. 130(12), 1179–1186 (2004)

    Article  Google Scholar 

  14. Hu, Y.F., Wan, W.Y., Cai, F.K., Mao, G., Xie, F.: Velocity distribution in narrow and deep rectangular open channels. J. Zhejiang Univ. (Eng. Sci.) 42(1), 183–187 (2008)

    Google Scholar 

  15. Bonakdari, H., Larrarte, F., Lassabatere, L., Joannis, C.: Turbulent velocity profile in fully-developed open channel flows. Environ. Fluid Mech. 8(1), 1–17 (2008)

    Article  Google Scholar 

  16. Absi, R.: An ordinary differential equation for velocity distribution and dip-phenomenon in open channel flows. J. Hydraul. Res. 49(1), 82–89 (2011)

    Article  MathSciNet  Google Scholar 

  17. Gac, J.M.: A large eddy based lattice-Boltzmann simulation of velocity distribution in an open channel flow with rigid and flexible vegetation. Acta Geophys. 62(1), 180–198 (2013). https://doi.org/10.2478/s11600-013-0178-1

    Article  Google Scholar 

  18. Fullard, L.A., Wake, G.C.: An analytical series solution to the steady laminar flow of a Newtonian fluid in a partially filled pipe, including the velocity distribution and the dip phenomenon. IMA J. Appl. Math. 80(6), 1890–1901 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Yang, S.-Q.: Depth-averaged shear stress and velocity in open-channel flows. J. Hydraul. Eng. 136(11), 952–958 (2010)

    Article  Google Scholar 

  20. Lassabatere, L., Pu, J.H., Bonakdari, H., Joannis, C., Larrarte, F.: Velocity distribution in open channel flows: analytical approach for the outer region. J. Hydraul. Eng. 139(1), 37–43 (2012)

    Google Scholar 

  21. Jang, J.S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  22. Azimi, H., Shabanlou, S., Ebtehaj, I., Bonakdari, H., Kardar, S.: Combination of computational fluid dynamics, adaptive neuro-fuzzy inference system, and genetic algorithm for predicting discharge coefficient of rectangular side orifices. J. Irrig. Drain. Eng. 04017015 (2017)

    Google Scholar 

  23. Gholami, A., et al.: A methodological approach of predicting threshold channel bank profile by multi-objective evolutionary optimization of ANFIS. Eng. Geol. 239, 298–309 (2018)

    Article  Google Scholar 

  24. Marzbanrad, J., Jamali, A.: Design of ANFIS networks using hybrid genetic and SVD methods for modeling and prediction of rubber engine mount stiffness. Int. J. Automot. Technol. 10(2), 167–174 (2009)

    Article  Google Scholar 

  25. Azimi, H., Bonakdari, H., Ebtehaj, I., Shabanlou, S., Ashraf Talesh, S.H., Jamali, A.: A pareto design of evolutionary hybrid optimization of ANFIS model in prediction abutment scour depth. Sādhanā 44(7), 1–14 (2019). https://doi.org/10.1007/s12046-019-1153-6

    Article  MathSciNet  Google Scholar 

  26. Bonakdari, H., et al.: Pareto design of multiobjective evolutionary neuro-fuzzy system for predicting scour depth around bridge piers. In: Water Engineering Modeling and Mathematic Tools, pp. 491–517. Elsevier (2021)

    Google Scholar 

  27. Ebtehaj, I., et al.: Pareto multiobjective bioinspired optimization of neuro-fuzzy technique for predicting sediment transport in sewer pipe. In: Soft Computing Techniques in Solid Waste and Wastewater Management, pp. 131–144. Elsevier (2021)

    Google Scholar 

  28. Khoshbin, F., Bonakdari, H., Ashraf Talesh, S.H., Ebtehaj, I., Zaji, A.H., Azimi, H.: Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs. Eng. Optim. 48(6), 933–948 (2016)

    Article  Google Scholar 

  29. Ebtehaj, I., Bonakdari, H., Zaji, A.H., Azimi, H., Khoshbin, F.: GMDH-type neural network approach for modeling the discharge coefficient of rectangular sharp-crested side weirs. Eng. Sci. Technol. Int. J. 18(4), 746–757 (2015)

    Google Scholar 

  30. Azimi, H., Bonakdari, H., Ebtehaj, I., Michelson, D.G.: A combined adaptive neuro-fuzzy inference system–firefly algorithm model for predicting the roller length of a hydraulic jump on a rough channel bed. Neural Comput. Appl. 29(6), 249–258 (2016). https://doi.org/10.1007/s00521-016-2560-9

    Article  Google Scholar 

  31. Azimi, H., Bonakdari, H., Ebtehaj, I., Talesh, S.H.A., Michelson, D.G., Jamali, A.: Evolutionary Pareto optimization of an ANFIS network for modeling scour at Pile groups in clear water condition. Fuzzy Sets Syst. 319, 50–69 (2017)

    Article  MathSciNet  Google Scholar 

  32. Bonakdari, H., Gharabaghi, B., Ebtehaj, I.: Extreme learning machines in predicting the velocity distribution in compound narrow channels. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) SAI 2018. AISC, vol. 857, pp. 119–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01177-2_9

    Chapter  Google Scholar 

  33. Bonakdari, H., Gharabaghi, B., Ebtehaj, I.: A highly efficient gene expression programming for velocity distribution at compound sewer channel. In: The 38th IAHR World Congress from September 1st to 6th, Panama City, Panama, pp. 2019–0221. (2019)

    Google Scholar 

  34. Bonakdari, H., Zaji, A.H., Gharabaghi, B., Ebtehaj, I., Moazamnia, M.: More accurate prediction of the complex velocity field in sewers based on uncertainty analysis using extreme learning machine technique. ISH J. Hydraul. Eng. 26(4), 409–420 (2020)

    Article  Google Scholar 

  35. Bonakdari, H., Qasem, S.N., Ebtehaj, I., Zaji, A.H., Gharabaghi, B., Moazamnia, M.: An expert system for predicting the velocity field in narrow open channel flows using self-adaptive extreme learning machines. Measurement 151, 107202 (2020)

    Article  Google Scholar 

  36. Larrarte, F.: Velocity fields within sewers: an experimental study. Flow Meas. Instrum. 17(5), 282–290 (2006)

    Article  Google Scholar 

  37. Bonakdari, H.: Modelisation des écoulements en conllecteur d’assainissement-application à la conception de points de mesures. Ph.D. Thesis, University of Caen, Caen, France (2006)

    Google Scholar 

  38. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. In: Bauer, F.L. (eds.) Linear algebra, HDBKAUCO, vol. 2, pp. 134–151. Springer, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10

  39. Ebtehaj, I., Bonakdari, H., Zaji, A.H., Azimi, H., Sharifi, A.: Gene expression programming to predict the discharge coefficient in rectangular side weirs. Appl. Soft Comput. 35, 618–628 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Bonakdari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonakdari, H., Azimi, H., Ebtehaj, I., Gharabaghi, B., Jamali, A., Talesh, S.H.A. (2022). Estimation of Velocity Field in Narrow Open Channels by a Hybrid Metaheuristic ANFIS Network. In: Arai, K. (eds) Intelligent Computing. SAI 2022. Lecture Notes in Networks and Systems, vol 506. Springer, Cham. https://doi.org/10.1007/978-3-031-10461-9_1

Download citation

Publish with us

Policies and ethics