Skip to main content

Optimization of Heat Production for Electricity Market Participation

  • Chapter
  • First Online:
Handbook of Low Temperature District Heating

Abstract

In this chapter, we introduce optimization methods for production scheduling and power market participation for district heating systems under uncertainty. We present an optimization model for scheduling the production units using mixed-integer linear programming and stochastic programming. Based on the optimal production scheduling, the bidding amounts and prices to the day-ahead market are determined using an extension of the model. Results are shown for a demo case of a Danish district heating system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Birge, J. R., & Louveaux, F. (2006). Introduction to Stochastic Programming (2nd ed.). Springer. https://doi.org/10.1007/0-387-33477-7.

  2. Blanco, I., Guericke, D., Andersen, A., & Madsen, H. (2018). Operational planning and bidding for district heating systems with uncertain renewable energy production. Energies,11(3310). https://doi.org/10.3390/en11123310.

  3. Blanco, I., Andersen, A., Guericke, D., & Madsen, H. (2019). A novel bidding method for combined heat and power units in district heating systems. Energy Systems. https://doi.org/10.1007/s12667-019-00352-0.

    Article  Google Scholar 

  4. Boomsma, T. K., Juul, N., & Fleten, S. E. (2014). Bidding in sequential electricity markets: The Nordic case. European Journal of Operational Research, 238(3), 797–809. https://doi.org/10.1016/j.ejor.2014.04.027.

    Article  MathSciNet  MATH  Google Scholar 

  5. Carpaneto, E., Lazzeroni, P., & Repetto, M. (2015). Optimal integration of solar energy in a district heating network. Renewable Energy, 75, 714–721. https://doi.org/10.1016/j.renene.2014.10.055.

    Article  Google Scholar 

  6. Conejo, A. J., Nogales, F. J., & Arroyo, J. M. (2002). Price-taker bidding strategy under price uncertainty. IEEE Transactions on Power Systems, 17(4), 1081–1088. https://doi.org/10.1109/TPWRS.2002.804948.

    Article  Google Scholar 

  7. Dimoulkas, I., Amelin, M. (2014). Constructing bidding curves for a CHP producer in day-ahead electricity markets. In ENERGYCON 2014 - IEEE International Energy Conference (pp. 487–494). https://doi.org/10.1109/ENERGYCON.2014.6850471

  8. Fang, T., & Lahdelma, R. (2016). Optimization of combined heat and power production with heat storage based on sliding time window method. Applied Energy, 162(2016), 723–732. https://doi.org/10.1016/j.apenergy.2015.10.135.

    Article  Google Scholar 

  9. Faria, E., & Fleten, S. E. (2011). Day-ahead market bidding for a Nordic hydropower producer: Taking the Elbas market into account. Computational Management Science, 8(1–2), 75–101. https://doi.org/10.1007/s10287-009-0108-5.

    Article  MathSciNet  MATH  Google Scholar 

  10. Fleten, S. E., & Kristoffersen, T. K. (2007). Stochastic programming for optimizing bidding strategies of a Nordic hydropower producer. European Journal of Operational Research, 181(2), 916–928. https://doi.org/10.1016/j.ejor.2006.08.023.

    Article  MATH  Google Scholar 

  11. Kumbartzky, N., Schacht, M., Schulz, K., & Werners, B. (2017). Optimal operation of a CHP plant participating in the German electricity balancing and day-ahead spot market. European Journal of Operational Research, 261(1), 390–404. https://doi.org/10.1016/j.ejor.2017.02.006.

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, H., & Wang, S. J. (2014). Challenges in smart low-temperature district heating development. Energy Procedia, 61, 1472–1475. https://doi.org/10.1016/j.egypro.2014.12.150.

    Article  Google Scholar 

  13. Li, J., Fang, J., Zeng, Q., & Chen, Z. (2016). Optimal operation of the integrated electrical and heating systems to accommodate the intermittent renewable sources. Applied Energy, 167, 244–254. https://doi.org/10.1016/j.apenergy.2015.10.054.

    Article  Google Scholar 

  14. Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J. E., Hvelplund, F., & Mathiesen, B. V. (2014). 4th Generation District Heating (4GDH). Integrating smart thermal grids into future sustainable energy systems. Energy, 68, 1–11. https://doi.org/10.1016/j.energy.2014.02.089.

    Article  Google Scholar 

  15. Nielsen, M. G., Morales, J. M., Zugno, M., Pedersen, T. E., & Madsen, H. (2016). Economic valuation of heat pumps and electric boilers in the Danish energy system. Applied Energy, 167, 189–200. https://doi.org/10.1016/j.apenergy.2015.08.115.

    Article  Google Scholar 

  16. PandŽić, H., Morales, J. M., Conejo, A. J., & Kuzle, I. (2013). Offering model for a virtual power plant based on stochastic programming. Applied Energy, 105, 282–292. https://doi.org/10.1016/j.apenergy.2012.12.077.

    Article  Google Scholar 

  17. Ravn, H.V. (2004). Modelling Danish local CHP on market conditions. In 6th IAEE European Conference: Modelling in Energy Economics and Policy (pp. 1–18)

    Google Scholar 

  18. Rodriguez, C. P., & Anders, G. J. (2004). Bidding strategy design for different types of electric power market participants. IEEE Transactions on Power Systems, 19(2), 964–971. https://doi.org/10.1109/TPWRS.2004.826763.

    Article  Google Scholar 

  19. Rothwell, G., Gómez, T. (2003). The Norwegian and Nordic Power Sectors (pp. 161–186). https://doi.org/10.1109/9780470544495.ch7

  20. Sarbu, I., Mirza, M., & Crasmareanu, E. (2019). A review of modelling and optimisation techniques for district heating systems. International Journal of Energy Research, 43(13), 6572–6598. https://doi.org/10.1002/er.4600.

    Article  Google Scholar 

  21. Schledorn, A., Guericke, D., Andersen, A., & Madsen, H. (2021). Optimising block bids of district heating operators to the day-ahead electricity market using stochastic programming. Smart Energy, 1. https://doi.org/10.1016/j.segy.2021.100004.

  22. Wang, H., Yin, W., Abdollahi, E., Lahdelma, R., & Jiao, W. (2015). Modelling and optimization of CHP based district heating system with renewable energy production and energy storage. Applied Energy, 159, 401–421. https://doi.org/10.1016/j.apenergy.2015.09.020.

    Article  Google Scholar 

Download references

Acknowledgements

Brønderslev Forsyning A/S and the Department of Applied Mathematics and Computer Science, Technical University of Denmark, are partners in the project Heat 4.0—Digitally supported Smart District Heating funded by Innovation Fund Denmark (grant no. 8090-00046B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Guericke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 TECNALIA

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guericke, D., Schledorn, A., Madsen, H. (2022). Optimization of Heat Production for Electricity Market Participation. In: Garay-Martinez, R., Garrido-Marijuan, A. (eds) Handbook of Low Temperature District Heating. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-10410-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10410-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10409-1

  • Online ISBN: 978-3-031-10410-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics