Skip to main content

Integrated Energy Planning at City Level

  • Chapter
  • First Online:
Handbook of Low Temperature District Heating

Abstract

It is widely acknowledged that cities play a key role on the energy transition, as responsible for a large share of final energy use and having generally strong competences enabling them to promote energy efficiency and renewable energies. Integrated city energy planning is necessary if a timely and just energy transition is to be achieved and is therefore increasingly used by the local authorities. The goal is to define medium and long-term strategies and plan actions towards reducing energy use and greenhouse gas emissions, while ensuring this will have an overall positive effect in citizen’s socioeconomic status and quality of life. This chapter will present a methodological framework and tools for integrated city energy planning. It will also propose ways to consider Low Temperature District Heating systems in city energy planning, as a valuable alternative to reduce heating and cooling energy use within the cities. Finally, several examples for integrated city energy planning focusing in the heating and cooling sector will be presented, as well as a case study for planning of a new Low Temperature District Heating network in the city of Bilbao.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.mysmartlife.eu/mysmartlife/.

  2. 2.

    https://www.matchup-project.eu/.

  3. 3.

    https://makingcity.eu/.

  4. 4.

    https://smartcity-atelier.eu/.

References

  1. UNFCCC. (2015). The Paris agreement. Paris. https://doi.org/10.4324/9789276082569-2

  2. European Commission. (2019). The European green deal (p. 24). Brussels: European Commission. https://doi.org/10.1017/CBO9781107415324.004

  3. European Commission. (2020). European climate law. European Commission. https://doi.org/10.1017/CBO9781107415324.004

  4. European Commission. (2020). An EU-wide assessment of national energy and climate plans driving. Brussels: European Commission. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0564&from=EN

  5. UN General Assembly. (2015). Transforming our world: The 2030 Agenda for sustainable development (pp. 1–35). https://www.refworld.org/docid/57b6e3e44.html

  6. International Energy Agency. (2016). Energy technology perspectives. Paris. https://www.iea.org/reports/energy-technology-perspectives-2016

  7. Covenant of Mayors Office. (2020). Covenant of mayors for climate & energy Europe. https://www.covenantofmayors.eu/en/

  8. European Commission. (2020). 100 climate-neutral cities by 2030—by and for the citizens: Report of the mission board for climate-neutral and smart cities. Publications Office

    Google Scholar 

  9. Mirakyan, A., & De Guio, R. (2013). Integrated energy planning in cities and territories: A review of methods and tools. Renewable and Sustainable Energy Reviews, 22, 289–297. https://doi.org/10.1016/J.RSER.2013.01.033

    Article  Google Scholar 

  10. IEA-ETSAP. (2004). TIMES modelling tool. https://iea-etsap.org/index.php/etsap-tools/model-generators/times

  11. Aalborg University. EnergyPLAN. Aalborg: Department of Development and Planning, Aalborg University. https://www.energyplan.eu/

  12. Stockholm Environment Institute. (2022). LEAP: The low emissions analysis platform. Somerville, MA, USA: Stockholm Environment Institute. https://leap.sei.org

  13. Mattoni, B., Gugliermetti, F., & Bisegna, F. (2015). A multilevel method to assess and design the renovation and integration of smart cities. Sustainable Cities and Society, 15, 105–119. https://doi.org/10.1016/J.SCS.2014.12.002

    Article  Google Scholar 

  14. Krog, L., & Sperling, K. (2019). A comprehensive framework for strategic energy planning based on Danish and international insights. Energy Strategy Reviews, 24, 83–93. https://doi.org/10.1016/J.ESR.2019.02.005

    Article  Google Scholar 

  15. Arrizabalaga, E., García-Gusano, D., & Hernandez, P. (2021). Toward sustainable long-term energy planning for cities: An economic and environmental assessment of sustainable fuel technologies in the city of Donostia-San Sebastián. Sustainable fuel technologies handbook (pp. 483–510). https://doi.org/10.1016/B978-0-12-822989-7.00017-2

  16. Arrizabalaga, E. et al. (2019). Methodology for the advanced integrated urban energy planning. In Proceedings (vol. 20, p. 8). https://doi.org/10.3390/proceedings2019020017

  17. DesignBuilder Software Ltd. Design Builder Simulation Tool. Version: 3.04.041

    Google Scholar 

  18. U.S. Department of Energy. (2018). Energy Plus. https://energyplus.net/weather-location/europe_wmo_region_6

  19. Yang, L., He, B. J., & Ye, M. (2014). Application research of ECOTECT in residential estate planning. Energy and Buildings, 72, 195–202. https://doi.org/10.1016/J.ENBUILD.2013.12.040

    Article  Google Scholar 

  20. Manwell, J. et al. (1999). Hybrid2: A hybrid system simulation model: theory manual

    Google Scholar 

  21. Hellström, G., & Sanner, B. (1994). Earth energy designer software for dimensioning of deep boreholes for heat extraction. In 6th International Conference on Thermal Energy Storage (pp. 195–202). https://buildingphysics.com/download/eed-calor.pdf

  22. Leng, G. J. (2000). RETScreenTM International: A decision support and capacity building tool for assessing potential renewable energy projects. Ind. Environ., 23(3), 22–23.

    Google Scholar 

  23. Universidad de Zaragoza. (2021). iHOGA—Software de simulación y optimización de suministro eléctrico basado en energías renovables. Zaragoza. https://ihoga.unizar.es/Desc/iHOGA_User_manual.pdf

  24. HOMER Energy. https://www.homerenergy.com/index.html

  25. University of Wisconsin-Madison Solar Energy Laboratory. (2021). TRNSYS 17—a TRaNsient SYstem Simulation program (vol. 7). http://www.trnsys.com/

  26. Dempsey, M. (2006). Dymola for multi-engineering modelling and simulation. In 2006 IEEE Vehicle Power and Propulsion Conference (pp. 1–6). https://doi.org/10.1109/VPPC.2006.364294

  27. Madrazo, L., Sicilia, A., & Gamboa, G. (2012). SEMANCO: Semantic tools for carbon reduction in urban planning

    Google Scholar 

  28. Lotteau, M., Yepez-Salmon, G., & Salmon, N. (2015). Environmental assessment of sustainable neighborhood projects through NEST, a decision support tool for early stage urban planning. Procedia Engineering, 115, 69–76. https://doi.org/10.1016/J.PROENG.2015.07.356

  29. Robinson, D. et al. (2009). CITYSIM: Comprehensive micro-simulation of resource flows for sustainable urban planning (pp. 1083–1090). Glasgow. https://www.researchgate.net/publication/43652081_CITYSIM_Comprehensive_Micro-Simulation_of_Resource_Flows_for_Sustainable_Urban_Planning

  30. Tecnalia Research & Innovation. (2019). Enerkad. https://www.enerkad.net/

  31. PRĂ© Sustainability, B. V. SimaPro. https://simapro.com/

  32. Sphera Solutions GmbH. GaBi. https://gabi.sphera.com/spain/index/

  33. Ecoinvent. https://ecoinvent.org/

  34. Hernandez, P., & Kenny, P. (2012). Net energy analysis of domestic solar water heating installations in operation. Renewable and Sustainable Energy Reviews, 16. https://doi.org/10.1016/j.rser.2011.07.144.

  35. Kubiszewski, I., Cleveland, C. J., & Endres, P. K. (2010). Meta-analysis of net energy return for wind power systems. Renewable Energy, 35(1), 218–225. https://doi.org/10.1016/J.RENENE.2009.01.012

    Article  Google Scholar 

  36. Arrizabalaga, E., Hernandez, P., Oregi, X., Mabe, L., & Sarachu, B. (2012). Net energy analysis of geothermal energy installations

    Google Scholar 

  37. Lind, A., & Espegren, K. (2017). The use of energy system models for analysing the transition to low-carbon cities – The case of Oslo. Energy Strategy Reviews, 15, 44–56. https://doi.org/10.1016/J.ESR.2017.01.001

    Article  Google Scholar 

  38. International Energy Agency and Nordic Council of Ministers. (2016). Nordic energy technology perspectives 2016: Cities, flexibility and pathways to carbon-neutrality. OECD

    Google Scholar 

  39. Gouveia, J. et al. (2014). Integrative smart city planning—buildings and mobility in Évora

    Google Scholar 

  40. Dong, C., Huang, G., Cai, Y., Cheng, G., & Tan, Q. (2016). Bayesian interval robust optimization for sustainable energy system planning in Qiqihar City, China. Energy Economics, 60, 357–376. https://doi.org/10.1016/J.ENECO.2016.10.012

    Article  Google Scholar 

  41. S Mathiesen, B. V., Lund, R. S., Connolly, D., Ridjan, I., & Nielsen, C. (2015). Energy vision 2050: A sustainable vision for bringing a capital to 100% renewable energy. Aalborg: Department of Development and Planning Aalborg University

    Google Scholar 

  42. GarcĂ­a-Gusano, D., MartĂ­n-Gamboa, M., Iribarren, D., & Dufour, J. (2016). Prospective analysis of life-cycle indicators through endogenous integration into a national power generation model. Resources, 5, Advanced analysis of energy systems under sustainability aspects. https://doi.org/10.3390/resources5040039

  43. García-Gusano, D., Iribarren, D., & Dufour, J. (2018). Is coal extension a sensible option for energy planning? A combined energy systems modelling and life cycle assessment approach. Energy Policy, 114, 413–421. https://doi.org/10.1016/j.enpol.2017.12.038

    Article  Google Scholar 

  44. Trutnevyte, E., McDowall, W., Tomei, J., & Keppo, I. (2016). Energy scenario choices: Insights from a retrospective review of UK energy futures. Renewable and Sustainable Energy Reviews, 55, 326–337. https://doi.org/10.1016/J.RSER.2015.10.067

    Article  Google Scholar 

  45. Swan, L. G., & Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renewable and Sustainable Energy Reviews, 13, 1819–1835. https://doi.org/10.1016/j.rser.2008.09.033

    Article  Google Scholar 

  46. Kavgic, M., Mavrogianni, A., Mumovic, D., Summerfield, A., Stevanovic, Z., & Djurovic-petrovic, M. (2010). A review of bottom-up building stock models for energy consumption in the residential sector. Building and Environment, 45, 1683–1697. https://doi.org/10.1016/j.buildenv.2010.01.021

    Article  Google Scholar 

  47. Kazas, G., Fabrizio, E., & Perino, M. (2017). Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study. Applied Energy, 193, 243–262. https://doi.org/10.1016/j.apenergy.2017.01.095

    Article  Google Scholar 

  48. Hachem, C., Athienitis, A., & Fazio, P. (2012). Evaluation of energy supply and demand in solar neighborhood. Energy Build., 49, 335–347. https://doi.org/10.1016/j.enbuild.2012.02.021

    Article  Google Scholar 

  49. Trimble. SketchUp. https://www.sketchup.com/

  50. NREL, ANL, LBNL, ORNL, and PNNL. OpenStudio. Alliance for sustainable energy. https://openstudio.net/

  51. Wang, D., Landolt, J., Mavromatidis, G., Orehounig, K., & Carmeliet, J. (2018). Energy & Buildings CESAR: A bottom-up building stock modelling tool for Switzerland to address sustainable energy transformation strategies. Energy Building, 169, 9–26. https://doi.org/10.1016/j.enbuild.2018.03.020

    Article  Google Scholar 

  52. Buffat, R., Froemelt, A., Heeren, N., Raubal, M., & Hellweg, S. (2017). Big data GIS analysis for novel approaches in building stock modelling. Applied Energy, 208, 277–290. https://doi.org/10.1016/J.APENERGY.2017.10.041

    Article  Google Scholar 

  53. Firth, S. K., Lomas, K. J. & Wright, A. J. (2010). Targeting household energy-efficiency measures using sensitivity analysis. Building Research & Information, 38(2016), 25–41. https://doi.org/10.1080/09613210903236706

  54. Boardman, B., et al. (2005). 40% House project. Environmental Change Institute, University of Oxford.

    Google Scholar 

  55. ETH Zurich. CEA. https://cityenergyanalyst.com/

  56. Ferrando, M., Causone, F., Hong, T., & Chen, Y. (2020). Urban building energy modeling (UBEM) tools: A state-of-the-art review of bottom-up physics-based approaches. Sustainable Cities and Society, 62, 102408. https://doi.org/10.1016/j.scs.2020.102408

    Article  Google Scholar 

  57. Open Source Geospatial Foundation Project. (2018). QGIS geographic information system. https://qgis.org

  58. Lund, H., et al. (2018). The status of 4th generation district heating: Research and results. Energy, 164, 147–159. https://doi.org/10.1016/J.ENERGY.2018.08.206

    Article  Google Scholar 

  59. Vasco, G., & Jaurlaritza, E. Certificado de eficiencia energética. https://www.euskadi.eus/certificado-eficiencia-energetica/web01-a2indust/es/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patxi Hernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 TECNALIA

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arrizabalaga, E., Garcia-Gusano, D., Hernandez, P., Hermoso, N. (2022). Integrated Energy Planning at City Level. In: Garay-Martinez, R., Garrido-Marijuan, A. (eds) Handbook of Low Temperature District Heating. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-10410-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10410-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10409-1

  • Online ISBN: 978-3-031-10410-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics