Skip to main content

Machine-Assisted Proofs for Institutions in Coq

  • Conference paper
  • First Online:
Theoretical Aspects of Software Engineering (TASE 2022)

Abstract

The theory of institutions provides an abstract mathematical framework for specifying logical systems and their semantic relationships. Institutions are based on category theory and have deep roots in a well-developed branch of algebraic specification. However, there are no machine-assisted proofs of correctness for institution-theoretic constructions—chiefly satisfaction conditions for institutions and their (co)morphisms—making them difficult to incorporate into mainstream formal methods. This paper therefore provides the details of our approach to formalizing a fragment of the theory of institutions in the Coq proof assistant. We instantiate this framework with the institutions \( FOPEQ \) for first-order predicate logic and \( EVT \) for the Event-B specification language, both of which will serve as an illustration and evaluation of the overall approach.

Funded by the Irish Research Council (GOIPG/2019/4529).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/AlDanial/cloc.

References

  1. Amato, G., Maggesi, M., Parton, M., Brogi, C.P.: Universal Algebra in UniMath (2020). https://arxiv.org/abs/2007.04840

  2. Burstall, R.M., Goguen, J.A.: The semantics of clear, a specification language. In: Bjøorner, D. (ed.) Abstract Software Specifications. LNCS, vol. 86, pp. 292–332. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10007-5_41

    Chapter  Google Scholar 

  3. Capretta, V.: Universal algebra in type theory. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin, C. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 131–148. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48256-3_10

    Chapter  MATH  Google Scholar 

  4. Chlipala, A.: Certified Programming with Dependent Types: A Pragmatic Introduction to the Coq Proof Assistant. MIT Press (2013). http://adam.chlipala.net/cpdt/

  5. Coq Development Team: The Coq Proof Assistant. https://coq.inria.fr/

  6. Farrell, M.: Event-B in the Institutional Framework: Defining a Semantics, Modularisation Constructs and Interoperability for a Specification Language. Ph.D. thesis, National University of Ireland Maynooth (2017). http://mural.maynoothuniversity.ie/9911/

  7. Goguen, J.A., Burstall, R.M.: Introducing institutions. In: Clarke, E., Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 221–256. Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-12896-4_366

    Chapter  Google Scholar 

  8. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. ACM 39(1), 95–146 (1992). https://doi.org/10.1145/147508.147524

    Article  MathSciNet  MATH  Google Scholar 

  9. Gunther, E., Gadea, A., Pagano, M.: Formalization of universal algebra in Agda. Electron. Notes Theor. Comput. Sci. 338, 147–166 (2018). https://doi.org/10.1016/j.entcs.2018.10.010

    Article  MathSciNet  MATH  Google Scholar 

  10. Knapp, A., Mossakowski, T., Roggenbach, M., Glauer, M.: An institution for simple UML state machines. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 3–18. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46675-9_1

    Chapter  Google Scholar 

  11. Mossakowski, T., Goguen, J., Diaconescu, R., Tarlecki, A.: What is a logic? In: Logica Universalis, pp. 111–133. Birkhäuser Basel (2007)

    Google Scholar 

  12. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1_40

    Chapter  Google Scholar 

  13. Reynolds, C.: Formalizing the institution for Event-B in the coq proof assistant. In: Raschke, A., Méry, D. (eds.) ABZ 2021. LNCS, vol. 12709, pp. 162–166. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77543-8_17

    Chapter  Google Scholar 

  14. Riehl, E.: Category Theory in Context. Dover Modern Math Originals, Dover Publications, Aurora (2017)

    Google Scholar 

  15. Roggenbach, M.: CSP-CASL—a new integration of process algebra and algebraic specification. Theor. Comput. Sci. 354(1), 42–71 (2006). https://doi.org/10.1016/j.tcs.2005.11.007

    Article  MathSciNet  MATH  Google Scholar 

  16. Romanovsky, A., Thomas, M. (eds.): Industrial Deployment of System Engineering Methods. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33170-1

    Book  Google Scholar 

  17. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software Development. Monographs in Theoretical Computer Science. An EATCS Series, Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-17336-3

    Book  MATH  Google Scholar 

  18. Sozeau, M.: Equations: a dependent pattern-matching compiler. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 419–434. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-5_29

    Chapter  Google Scholar 

  19. Univalent Foundations Program: Homotopy Type Theory: Univalent Foundations of Mathematics (2013). https://homotopytypetheory.org/book. Institute for Advanced Study

  20. Wiegley, J.: Category Theory in Coq. https://github.com/jwiegley/category-theory

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conor Reynolds .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reynolds, C., Monahan, R. (2022). Machine-Assisted Proofs for Institutions in Coq. In: Aït-Ameur, Y., Crăciun, F. (eds) Theoretical Aspects of Software Engineering. TASE 2022. Lecture Notes in Computer Science, vol 13299. Springer, Cham. https://doi.org/10.1007/978-3-031-10363-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10363-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10362-9

  • Online ISBN: 978-3-031-10363-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics