Abstract
The theory of institutions provides an abstract mathematical framework for specifying logical systems and their semantic relationships. Institutions are based on category theory and have deep roots in a well-developed branch of algebraic specification. However, there are no machine-assisted proofs of correctness for institution-theoretic constructions—chiefly satisfaction conditions for institutions and their (co)morphisms—making them difficult to incorporate into mainstream formal methods. This paper therefore provides the details of our approach to formalizing a fragment of the theory of institutions in the Coq proof assistant. We instantiate this framework with the institutions \( FOPEQ \) for first-order predicate logic and \( EVT \) for the Event-B specification language, both of which will serve as an illustration and evaluation of the overall approach.
Funded by the Irish Research Council (GOIPG/2019/4529).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Amato, G., Maggesi, M., Parton, M., Brogi, C.P.: Universal Algebra in UniMath (2020). https://arxiv.org/abs/2007.04840
Burstall, R.M., Goguen, J.A.: The semantics of clear, a specification language. In: Bjøorner, D. (ed.) Abstract Software Specifications. LNCS, vol. 86, pp. 292–332. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10007-5_41
Capretta, V.: Universal algebra in type theory. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin, C. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 131–148. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48256-3_10
Chlipala, A.: Certified Programming with Dependent Types: A Pragmatic Introduction to the Coq Proof Assistant. MIT Press (2013). http://adam.chlipala.net/cpdt/
Coq Development Team: The Coq Proof Assistant. https://coq.inria.fr/
Farrell, M.: Event-B in the Institutional Framework: Defining a Semantics, Modularisation Constructs and Interoperability for a Specification Language. Ph.D. thesis, National University of Ireland Maynooth (2017). http://mural.maynoothuniversity.ie/9911/
Goguen, J.A., Burstall, R.M.: Introducing institutions. In: Clarke, E., Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 221–256. Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-12896-4_366
Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. ACM 39(1), 95–146 (1992). https://doi.org/10.1145/147508.147524
Gunther, E., Gadea, A., Pagano, M.: Formalization of universal algebra in Agda. Electron. Notes Theor. Comput. Sci. 338, 147–166 (2018). https://doi.org/10.1016/j.entcs.2018.10.010
Knapp, A., Mossakowski, T., Roggenbach, M., Glauer, M.: An institution for simple UML state machines. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 3–18. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46675-9_1
Mossakowski, T., Goguen, J., Diaconescu, R., Tarlecki, A.: What is a logic? In: Logica Universalis, pp. 111–133. Birkhäuser Basel (2007)
Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1_40
Reynolds, C.: Formalizing the institution for Event-B in the coq proof assistant. In: Raschke, A., Méry, D. (eds.) ABZ 2021. LNCS, vol. 12709, pp. 162–166. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77543-8_17
Riehl, E.: Category Theory in Context. Dover Modern Math Originals, Dover Publications, Aurora (2017)
Roggenbach, M.: CSP-CASL—a new integration of process algebra and algebraic specification. Theor. Comput. Sci. 354(1), 42–71 (2006). https://doi.org/10.1016/j.tcs.2005.11.007
Romanovsky, A., Thomas, M. (eds.): Industrial Deployment of System Engineering Methods. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33170-1
Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software Development. Monographs in Theoretical Computer Science. An EATCS Series, Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-17336-3
Sozeau, M.: Equations: a dependent pattern-matching compiler. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 419–434. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-5_29
Univalent Foundations Program: Homotopy Type Theory: Univalent Foundations of Mathematics (2013). https://homotopytypetheory.org/book. Institute for Advanced Study
Wiegley, J.: Category Theory in Coq. https://github.com/jwiegley/category-theory
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Reynolds, C., Monahan, R. (2022). Machine-Assisted Proofs for Institutions in Coq. In: Aït-Ameur, Y., Crăciun, F. (eds) Theoretical Aspects of Software Engineering. TASE 2022. Lecture Notes in Computer Science, vol 13299. Springer, Cham. https://doi.org/10.1007/978-3-031-10363-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-10363-6_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10362-9
Online ISBN: 978-3-031-10363-6
eBook Packages: Computer ScienceComputer Science (R0)