Skip to main content

Light Backscattering by Atmospheric Particles: From Laboratory to Field Experiments

  • Chapter
  • First Online:
Springer Series in Light Scattering

Part of the book series: Springer Series in Light Scattering ((SSLS))

  • 283 Accesses

Abstract

Atmospheric particles may somewhat counterbalance the global warming effect of the Earth’s atmosphere due to greenhouse gases by directly contributing to the Earth’s climate through light scattering and absorption processes. According to the IPCC report (IPCC in Climate change 2013: the physical science basis. New York: Cambridge Univ. Press, 2013), the contribution of such particles to the Earth’s radiative budget however remains difficult to handle and quantify, mainly due to the complexity of these particles, which present a wide range of sizes, shapes and complex refractive indices. To face such a complexity, a major source of global data on these particles is provided by ground-based and satellite-based lidar remote sensing instruments, which are based on light backscattering and extinction by atmospheric particles. In this context, this book chapter proposes to present some recent advances in the field of light backscattering by complex-shaped atmospheric particles at specific backward scattering angle (\(\theta =\pi\)) at which lidar instruments operate, for the first time to our knowledge in laboratory where a π-polarimeter has been built and operated for aerosols (Miffre et al. in J Quant Spectrosc Radiat Transf 169:79–90, 2016; Miffre et al. in J Quant Spectrosc Radiat Transf 222–223:45–59, 2019b; Miffre et al. Atmos Meas Tech, 2022). These papers are the results of a team work in which Prof. Rairoux’s expertise in lidar remote sensing and laser spectroscopy played a key role. This work also owes much to former PhD students, G. David and D. Cholleton, who also played a key role. Laboratory experiments at near (\(\theta <\pi )\) backscattering angles are likewise proposed in complement as well as cooperative works with ONERA (Paulien et al. in J Quant Spectrosc Radiat Transf 260, 2021) and chemical colleagues from Lyon University (France) and North Carolina University (USA) (Dubois et al. in Phys Chem Chem Phys 23:5927–5935, 2021) to explore light backscattering by complex-shaped particles. The benefits of this new laboratory approach, in comparison with existing light scattering numerical simulations and lidar field experiments, is discussed. We hope this book chapter will improve our understanding of the complex physical process of light backscattering by atmospheric particles, to in turn improve our understanding of the radiative properties of complex-shaped atmospheric particles, to provide answer to radiative transfer issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman TP, Toon OB (1981) Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles. Appl Opt 20:3661. https://doi.org/10.1364/AO.20.003661

    Article  ADS  Google Scholar 

  • Ansmann A, Petzold A, Kandler K, Tegen I, Wendisch M, Müller D, Weinzierl B, Müller T, Heintzenberg J (2011) Saharan Mineral Dust Experiments SAMUM–1 and SAMUM–2: what have we learned? Tellus B Chem. Phys Meteorol 63:403–429. https://doi.org/10.1111/j.1600-0889.2011.00555.x

    Article  Google Scholar 

  • Behrendt A, Nakamura T (2002) Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature. Opt Express 10:805–817. https://doi.org/10.1364/OE.10.000805

    Article  ADS  Google Scholar 

  • Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley-VCH, Weinheim

    Google Scholar 

  • Burton SP, Chemyakin E, Liu X, Knobelspiesse K, Stamnes S, Sawamura P, Moore RH, Hostetler CA, Ferrare RA (2016) Information content and sensitivity of the 3 β + 2 α lidar measurement system for aerosol microphysical retrievals. Atmos Meas Tech 9:5555–5574. https://doi.org/10.5194/amt-9-5555-2016

  • Chien C-H, Theodore A, Wu C-Y, Hsu Y-M, Birky B (2016) Upon correlating diameters measured by optical particle counters and aerodynamic particle sizers. J Aerosol Sci 101:77–85. https://doi.org/10.1016/j.jaerosci.2016.05.011

    Article  ADS  Google Scholar 

  • Cholleton D, Bialic E, Dumas A, Kaluzny P, Rairoux P, Miffre A (2020) Laboratory evaluation of the (VIS, IR) scattering matrix of complex-shaped ragweed pollen particles. J Quant Spectrosc Radiat Transf 254:107223. https://doi.org/10.1016/j.jqsrt.2020.107223

    Article  Google Scholar 

  • Cholleton D, Bialic É, Dumas A, Kaluzny P, Rairoux P, Miffre A (2022) Laboratory evaluation of the scattering matrix of ragweed, ash, birch and pine pollen towards pollen classification. Atmos Meas Tech 15:1021–1032. https://doi.org/10.5194/amt-15-1021-2022

  • Cotterell MI, Willoughby RE, Bzdek BR, Orr-Ewing AJ, Reid JP (2017) A complete parameterisation of the relative humidity and wavelength dependence of the refractive index of hygroscopic inorganic aerosol particles. Atmos Chem Phys 17:9837–9851. https://doi.org/10.5194/acp-17-9837-2017

    Article  ADS  Google Scholar 

  • Dabrowska DD, Muñoz O, Moreno F, Nousiainen T, Zubko E, Marra AC (2013) Experimental and simulated scattering matrices of small calcite particles at 647nm. J Quant Spectrosc Radiat Transf 124:62–78. https://doi.org/10.1016/j.jqsrt.2013.02.010

  • David G (2013) Polarization-resolved backscattering from nanoparticles in the atmosphere: field and laboratory experiments

    Google Scholar 

  • David G, Miffre A, Thomas B, Rairoux P (2012) Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols. Appl Phys B 108:197–216. https://doi.org/10.1007/s00340-012-5066-x

    Article  ADS  Google Scholar 

  • David G, Thomas B, Dupart Y, D’Anna B, George C, Miffre A, Rairoux P (2014) UV polarization lidar for remote sensing new particles formation in the atmosphere. Opt Express 22:A1009. https://doi.org/10.1364/OE.22.0A1009

    Article  ADS  Google Scholar 

  • David G, Thomas B, Nousiainen T, Miffre A, Rairoux P (2013) Retrieving simulated volcanic, desert dust and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization lidar and T matrix. Atmos Chem Phys 13:6757–6776. https://doi.org/10.5194/acp-13-6757-2013

    Article  ADS  Google Scholar 

  • Dubois C, Cholleton D, Gemayel R, Chen Y, Surratt JD, George C, Rairoux P, Miffre A, Riva M (2021) Decrease in sulfate aerosol light backscattering by reactive uptake of isoprene epoxydiols. Phys Chem Chem Phys 23:5927–5935. https://doi.org/10.1039/D0CP05468B

    Article  Google Scholar 

  • Dubovik O, Sinyuk A, Lapyonok T, Holben BN, Mishchenko M, Yang P, Eck TF, Volten H, Muñoz O, Veihelmann B, van der Zande WJ, Leon J-F, Sorokin M, Slutsker I (2006a) Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J Geophys Res 111:D11208. https://doi.org/10.1029/2005JD006619

  • Dubovik O, Sinyuk A, Lapyonok T, Holben BN, Mishchenko M, Yang P, Eck TF, Volten H, Muñoz O, Veihelmann B, van der Zande WJ, Leon J-F, Sorokin M, Slutsker I (2006b) Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J Geophys Res Atmos 111. https://doi.org/10.1029/2005JD006619

  • Dupart Y, King SM, Nekat B, Nowak A, Wiedensohler A, Herrmann H, David G, Thomas B, Miffre A, Rairoux P, D’Anna B, George C (2012) Mineral dust photochemistry induces nucleation events in the presence of SO2. Proc Natl Acad Sci U S A 109:20842–20847. https://doi.org/10.1073/pnas.1212297109

    Article  ADS  Google Scholar 

  • Freudenthaler V, Esselborn M, Wiegner M, Heese B, Tesche M, Ansmann A, MüLLER D, Althausen D, Wirth M, Fix A, Ehret G, Knippertz P, Toledano C, Gasteiger J, Garhammer M, Seefeldner M (2009) Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B Chem Phys Meteorol 61:165–179. https://doi.org/10.1111/j.1600-0889.2008.00396.x

    Article  ADS  Google Scholar 

  • Fu R, Wang C, Muñoz O, Videen G, Santarpia JL, Pan YL (2017) Elastic back-scatteringpatterns via particle surface roughness and orientation from single trapped airborne aerosol particles. J Quant Spectro Radiat Transfer 187:224–231

    Google Scholar 

  • Gasteiger J, Wiegner M, GROß S, Freudenthaler V, Toledano C, Tesche M, Kandler K (2011) Modelling lidar-relevant optical properties of complex mineral dust aerosols. Tellus Ser B Chem Phys Meteorol 63:725–741. https://doi.org/10.1111/j.1600-0889.2011.00559.x

  • Gautam P, Maughan JB, Ilavsky J, Sorensen CM (2020) Light scattering study of highly absorptive, non-fractal, hematite aggregates. J Quant Spectrosc Radiat Transf 246:106919. https://doi.org/10.1016/j.jqsrt.2020.106919

    Article  Google Scholar 

  • Glen A, Brooks SD (2013) A new method for measuring optical scattering properties of atmospherically relevant dusts using the Cloud and Aerosol Spectrometer with Polarization (CASPOL). Atmos Chem Phys 13:1345–1356. https://doi.org/10.5194/acp-13-1345-2013

    Article  ADS  Google Scholar 

  • Go S, Lyapustin A, Schuster GL, Choi M, Ginoux P, Chin M, Kalashnikova O, Dubovik O, Kim J, da Silva A, Holben B, Reid JS (2022) Inferring iron-oxide species content in atmospheric mineral dust from DSCOVR EPIC observations. Atmos Chem Phys 22:1395–1423. https://doi.org/10.5194/acp-22-1395-2022

    Article  ADS  Google Scholar 

  • Gómez Martín JC, Guirado D, Frattin E, Bermudez-Edo M, Cariñanos Gonzalez P, Olmo Reyes FJ, Nousiainen T, Gutiérrez PJ, Moreno F, Muñoz O (2021) On the application of scattering matrix measurements to detection and identification of major types of airborne aerosol particles: Volcanic ash, desert dust and pollen. J Quant Spectrosc Radiat Transf 271:107761. https://doi.org/10.1016/j.jqsrt.2021.107761

    Article  Google Scholar 

  • Haarig M, Ansmann A, Baars H, Jimenez C, Veselovskii I, Engelmann R, Althausen D (2018) Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke. Atmos Chem Phys 18:11847–11861. https://doi.org/10.5194/acp-18-11847-2018

    Article  ADS  Google Scholar 

  • Haarig M, Ansmann A, Engelmann R, Baars H, Toledano C, Torres B, Althausen D, Radenz M, Wandinger U (2022) First triple-wavelength lidar observations of depolarization and extinction-to-backscatter ratios of Saharan dust. Atmos Chem Phys 22:355–369. https://doi.org/10.5194/acp-22-355-2022

    Article  ADS  Google Scholar 

  • Hofer J, Ansmann A, Althausen D, Engelmann R, Baars H, Fomba, KW, Wandinger U, Abdullaev SF, Makhmudov AN (2020) Optical properties of Central Asian aerosol relevant for spaceborne lidar applications and aerosol typing at 355 and 532 nm. Atmos Chem Phys 20:9265–9280. https://doi.org/10.5194/acp-20-9265-2020

  • Huang X, Yang P, Kattawar G, Liou K-N (2015) Effect of mineral dust aerosol aspect ratio on polarized reflectance. J Quant Spectrosc Radiat Transf 151:97–109. https://doi.org/10.1016/j.jqsrt.2014.09.014

    Article  ADS  Google Scholar 

  • Huang Y, Liu C, Yao B, Yin Y, Bi L (2020) Scattering matrices of mineral dust aerosols: a refinement of the refractive index impact. Atmos Chem Phys 20:2865–2876. https://doi.org/10.5194/acp-20-2865-2020

  • Hunt AJ (1973) A new polarization-modulated light scattering instrument. Rev Sci Instrum 44:1753. https://doi.org/10.1063/1.1686049

    Article  ADS  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis: Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, New York, NY.

    Google Scholar 

  • Järvinen E, Kemppinen O, Nousiainen T, Kociok T, Möhler O, Leisner T, Schnaiter M (2016) Laboratory investigations of mineral dust near-backscattering depolarization ratios. J Quant Spectrosc Radiat Transf Electromagnetic Light Scattering Nonspherical Particles XV: Celebrating 150 years of Maxwell’s electromagnetics 178:192–208. https://doi.org/10.1016/j.jqsrt.2016.02.003

  • Kahnert M (2015) Modelling radiometric properties of inhomogeneous mineral dust particles: Applicability and limitations of effective medium theories. J Quant Spectrosc Radiat Transf 152:16–27. https://doi.org/10.1016/j.jqsrt.2014.10.025

    Article  ADS  Google Scholar 

  • Kahnert M, Kanngießer F, Järvinen E, Schnaiter M (2020) Aerosol-optics model for the backscatter depolarisation ratio of mineral dust particles. J Quant Spectrosc Radiat Transf 254:107177. https://doi.org/10.1016/j.jqsrt.2020.107177

    Article  Google Scholar 

  • Kahnert M, Nousiainen T, Lindqvist H (2014) Review: Model particles in atmospheric optics. J Quant Spectrosc Radiat Transf 146:41–58. https://doi.org/10.1016/j.jqsrt.2014.02.014

    Article  ADS  Google Scholar 

  • Kahnert M, Nousiainen T, Räisainen P (2007) Mie simulations as an error source in mineral aerosol radiative forcing calculations. QJR 133:299–307. https://doi.org/10.1002/qj.40

  • Kahnert M, Nousiainen T, Thomas MA, Tyynelä J (2012) Light scattering by particles with small-scale surface roughness: comparison of four classes of model geometries. J Quant Spectrosc Radiat Transf Electromagnetic Light Scatter Non-Spherical Particles XIII 113:2356–2367. https://doi.org/10.1016/j.jqsrt.2012.03.017

  • Kahnert M, Rother T (2011) Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt Express 19:11138–11151. https://doi.org/10.1364/OE.19.011138

    Article  ADS  Google Scholar 

  • Kemppinen O, Nousiainen T, Lindqvist H (2015) The impact of surface roughness on scattering by realistically shaped wavelength-scale dust particles. J Quant Spectrosc Radiat Transf 150:55–67. https://doi.org/10.1016/j.jqsrt.2014.05.024

    Article  ADS  Google Scholar 

  • Kuga Y, Ishimaru A (1984) Retroreflectance from a dense distribution of spherical particles. J Opt Soc Am A 1:831–835

    Article  ADS  Google Scholar 

  • Laan EC, Volten H, Stam DM, Muñoz O, Hovenier JW, Roush TL (2009) Scattering matrices and expansion coefficients of martian analogue palagonite particles. Icarus 199:219–230. https://doi.org/10.1016/j.icarus.2008.08.011

    Article  ADS  Google Scholar 

  • Liou K, Lahore H (1974) Laser sensing of cloud composition: a backscattered depolarization technique. J Appl Meteorol

    Google Scholar 

  • Liu C, Lee Panetta R, Yang P (2014) Inhomogeneity structure and the applicability of effective medium approximations in calculating light scattering by inhomogeneous particles. J Quant Spectrosc Radiat Transf 146:331–348. https://doi.org/10.1016/j.jqsrt.2014.03.018

    Article  ADS  Google Scholar 

  • Liu L, Mishchenko MI, Hovenier JW, Volten H, Muñoz O (2003) Scattering matrix of quartz aerosols: comparison and synthesis of laboratory and Lorenz-Mie results. J Quant Spectrosc Radiat Transf 79–80:911–920. https://doi.org/10.1016/S0022-4073(02)00328-X

    Article  ADS  Google Scholar 

  • Liu L, Mishchenko MI (2018) Scattering and radiative properties of morphologically complex carbonaceous aerosols: a systematic modeling study. Remote Sens 10(10). https://doi.org/10.3390/rs10101634

  • Mehri T (2018) Rétrodiffusion (UV, VIS) résolue en polarisation de particules d’origine désertique: expériences de laboratoire et en atmosphère réelle par lidar

    Google Scholar 

  • Mehri T, Kemppinen O, David G, Lindqvist H, Tyynelä J, Nousiainen T, Rairoux P, Miffre A (2018) Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles’ external mixtures and dust mass concentration retrievals. Atmospheric Res 203:44–61. https://doi.org/10.1016/j.atmosres.2017.11.027

    Article  ADS  Google Scholar 

  • Merikallio S, Lindqvist H, Nousiainen T, Kahnert M (2011) Modelling light scattering by mineral dust using spheroids: assessment of applicability. Atmospheric Chem. Phys. 11:5347–5363. https://doi.org/10.5194/acp-11-5347-2011

    Article  ADS  Google Scholar 

  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330:377–445. https://doi.org/10.1002/andp.19083300302

    Article  MATH  Google Scholar 

  • Miffre A, Cholleton D, Mehri T, Rairoux P (2019a) Remote Sensing Observation of New Particle Formation Events with a (UV, VIS) Polarization Lidar. Remote Sens 11:1761. https://doi.org/10.3390/rs11151761

    Article  ADS  Google Scholar 

  • Miffre A, Cholleton D, Noel, C. and Rairoux P (2022) Investigating the dependence of mineral dust depolarization on complex refractive index and size with a laboratory polarimeter at 180.0° lidar backscattering angle, submitted to Atmos Meas Tech

    Google Scholar 

  • Miffre A, Cholleton D, Rairoux P (2020) On the use of light polarization to investigate the size, shape, and refractive index dependence of backscattering Ångström exponents. Opt Lett 45:1084. https://doi.org/10.1364/OL.385107

    Article  ADS  Google Scholar 

  • Miffre A, Cholleton D, Rairoux P (2019b) Laboratory evaluation of the scattering matrix elements of mineral dust particles from 176.0° up to 180.0°-exact backscattering angle. J Quant Spectrosc Radiat Transf 222–223:45–59. https://doi.org/10.1016/j.jqsrt.2018.10.019

    Article  ADS  Google Scholar 

  • Miffre A, David G, Thomas B, Rairoux P (2011) Atmospheric non-spherical particles optical properties from UV-polarization lidar and scattering matrix. Geophys Res Lett 38:L16804. https://doi.org/10.1029/2011GL048310

    Article  ADS  Google Scholar 

  • Miffre A, David G, Thomas B, Rairoux P, Fjaeraa AM, Kristiansen NI, Stohl A (2012) Volcanic aerosol optical properties and phase partitioning behavior after long-range advection characterized by UV-Lidar measurements. Atmos Environ 48:76–84. https://doi.org/10.1016/j.atmosenv.2011.03.057

    Article  ADS  Google Scholar 

  • Miffre A, Mehri T, Francis M, Rairoux P (2016) UV–VIS depolarization from Arizona Test Dust particles at exact backscattering angle. J Quant Spectrosc Radiat Transf 169:79–90. https://doi.org/10.1016/j.jqsrt.2015.09.016

    Article  ADS  Google Scholar 

  • Mishchenko MI (2009) Electromagnetic scattering by nonspherical particles: a tutorial review. J Quant Spectrosc Radiat Transf 110:808–832. https://doi.org/10.1016/j.jqsrt.2008.12.005

    Article  ADS  Google Scholar 

  • Mishchenko MI, Hovenier JW (1995) Depolarization of light backscattered by randomly oriented nonspherical particles. Opt Lett 20:1356. https://doi.org/10.1364/OL.20.001356

    Article  ADS  Google Scholar 

  • Mishchenko MI, Hovenier JW, Mackowski DW (2004a) Single scattering by a small volume element. J Opt Soc Am A Opt Image Sci Vis 21:71–87. https://doi.org/10.1364/JOSAA.21.000071

  • Mishchenko MI, Liu L, Travis LD, Lacis AA (2004b) Scattering and radiative properties of semi-external versus external mixtures of different aerosol types. J Quant Spectrosc Radiat Transf 88:139–147. https://doi.org/10.1016/j.jqsrt.2003.12.032

    Article  ADS  Google Scholar 

  • Mishchenko MI, Liu L, Videen G (2007) Conditions of applicability of the single-scattering approximation. Opt Express 15:7522. https://doi.org/10.1364/OE.15.007522

    Article  ADS  Google Scholar 

  • Mishchenko MI, Travis L, Lacis A (2002) Scattering, absorption, and emission of light by small particles. Cambridge

    Google Scholar 

  • Mishchenko MI, Travis LD (1998) Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J Quant Spectrosc Radiat Transf 60:309–324. https://doi.org/10.1016/S0022-4073(98)00008-9

    Article  ADS  Google Scholar 

  • Mishchenko MI, Dlugach ZM, Zakharova NT (2013) Direct demonstration of the concept of unrestricted effective-medium approximations. Opt Lett 39:3935–3938

    Google Scholar 

  • Monge M, Rosenorn T, Favez O, Müller M, Adler G, Abo Riziq A, Rudich Y, Hermann H, George C, D’Anna B (2012) Alternative pathway for atmospheric particles growth. Proc 109, 6840–4. https://doi.org/10.1073/pnas.1120593109

  • Müller D, Veselovskii I, Kolgotin A, Tesche M, Ansmann A, Dubovik O (2013) Vertical profiles of pure dust and mixed smoke–dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations. Appl Opt 52:3178. https://doi.org/10.1364/AO.52.003178

    Article  ADS  Google Scholar 

  • Muñoz O, Hovenier JW (2011) Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air: a review. J Quant Spectrosc Radiat Transf 112:1646–1657. https://doi.org/10.1016/j.jqsrt.2011.02.005

    Article  ADS  Google Scholar 

  • Nakayama T, Sato K, Imamura T, Matsumi Y (2018) Effect of oxidation process on complex refractive index of secondary organic aerosol generated from isoprene. Environ Sci Technol 52:2566–2574. https://doi.org/10.1021/acs.est.7b05852

    Article  ADS  Google Scholar 

  • Nousiainen T (2009) Optical modeling of mineral dust particles: a review. J Quant Spectrosc Radiat Transf 110:1261–1279. https://doi.org/10.1016/j.jqsrt.2009.03.002

    Article  ADS  Google Scholar 

  • Olson N, Lei Z, Craig RL, Zhang Y, Chen Y, Lambe AT, Zhang Z, Gold A, Surratt JD, Ault AP (2019) Reactive uptake of isoprene epoxydiols increases the viscosity of the core of phase-separated aerosol particles. ACS Earth Space Chem. acsearthspacechem.9b00138. https://doi.org/10.1021/acsearthspacechem.9b00138

  • Ovadnevaite J, Ceburnis D, Plauskaite-Sukiene K, Modini R, Dupuy R, Rimselyte I, Ramonet M, Kvietkus K, Ristovski Z, Berresheim H, O’Dowd CD (2009) Volcanic sulphate and arctic dust plumes over the North Atlantic Ocean. Atmos Environ 43:4968–4974. https://doi.org/10.1016/j.atmosenv.2009.07.007

    Article  ADS  Google Scholar 

  • Paulien L, Ceolato R, Fossard F, Rairoux P, Miffre A (2021) (UV, VIS) Laboratory evaluation of the lidar depolarization ratio of freshly emitted soot aggregates from pool fire in ambient air at exact backscattering angle. J Quant Spectrosc Radiat Transf 260:107451. https://doi.org/10.1016/j.jqsrt.2020.107451

    Article  Google Scholar 

  • Perry R, Hunt A, Huffman D (1978) Experimental determinations of Mueller scattering matrices for nonspherical particles. Appl Opt 17:2700–2710. https://doi.org/10.1364/AO.17.002700

    Article  ADS  Google Scholar 

  • Räisänen P, Haapanala P, Chung CE, Kahnert M, Makkonen R, Tonttila J, Nousiainen T (2013) Impact of dust particle non-sphericity on climate simulations. QJR Meteorol Soc 139:2222–2232. https://doi.org/10.1002/qj.2084

    Article  ADS  Google Scholar 

  • Riva M, Chen Y, Zhang Y, Lei Z, Olson N, Boyer HC, Narayan S, Yee LD, Green H, Cui T, Zhang Z, Baumann KD, Fort M, Edgerton ES, Budisulistiorini S, Rose CA, Ribeiro I, de Oliveira RL, Santos E, Szopa S, Machado C, Zhao Y, Alves E, de Sa S, Hu W, Knipping E, Shaw S, Duvoisin Junior S, Souza RAF. de Palm BB, Jimenez JL, Glasius M, Goldstein AH, Pye HOT, Gold A, Turpin BJ, Vizuete W, Martin ST, Thornton J, Dutcher CS, Ault AP, Surratt JD (2019) Increasing Isoprene Epoxydiol-to-Inorganic Sulfate Aerosol (IEPOX:Sulf inorg ) ratio results in extensive conversion of inorganic sulfate to organosulfur forms: implications for aerosol physicochemical properties. Environ Sci Technol acs.est.9b01019. https://doi.org/10.1021/acs.est.9b01019

  • Saito M, Yang P, Ding J, Liu X (2021) A comprehensive database of the optical properties of irregular aerosol particles for radiative transfer simulations. J Atmos Sci 78:2089–2111. https://doi.org/10.1175/JAS-D-20-0338.1

  • Sakai T, Nagai T, Zaizen Y, Mano Y (2010) Backscattering linear depolarization ratio measurements of mineral, sea-salt, and ammonium sulfate particles simulated in a laboratory chamber. Appl Opt 49:4441. https://doi.org/10.1364/AO.49.004441

    Article  ADS  Google Scholar 

  • Schnaiter M, Büttner S, Möhler O, Skrotzki J, Vragel M, Wagner R (2012) Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals-cloud chamber measurements in the context of contrail and cirrus microphysics. Atmos Chem Phys 12:10465–10484. https://doi.org/10.5194/acp-12-10465-2012

    Article  ADS  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. J. Wiley, Hoboken, N.J

    Google Scholar 

  • Shakya KM, Peltier RE (2015) Non-sulfate sulfur in fine aerosols across the United States: insight for organosulfate prevalence. Atmos Environ 100:159–166. https://doi.org/10.1016/j.atmosenv.2014.10.058

    Article  ADS  Google Scholar 

  • Shakya KM, Peltier RE (2013) Investigating missing sources of sulfur at fairbanks. Alaska Environ Sci Technol 47:9332–9338. https://doi.org/10.1021/es402020b

  • Stier P, Seinfeld JH, Kinne S, Boucher O (2007) Aerosol absorption and radiative forcing. Atmos Chem Phys 25

    Google Scholar 

  • Studinski RC, Vitkin IA (2000) Methodology for examining polarized light interactions with tissues and tissuelike media in the exact backscattering direction. J Biomed Opt 5:330–337. https://doi.org/10.1117/1.430004

  • Surratt JD, Gómez-González Y, Chan AWH, Vermeylen R, Shahgholi M, Kleindienst TE, Edney EO, Offenberg JH, Lewandowski M, Jaoui M, Maenhaut W, Claeys M, Flagan RC, Seinfeld JH (2008) Organosulfate formation in biogenic secondary organic aerosol. J Phys Chem A 112:8345–8378. https://doi.org/10.1021/jp802310p

    Article  Google Scholar 

  • Tesche M, Ansmann A, Müller D, Althausen D, Engelmann R, Freudenthaler V, Groß S (2009) Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008. J Geophys Res 114. https://doi.org/10.1029/2009JD011862

  • Tesche M, Kolgotin A, Haarig M, Burton SP, Ferrare RA, Hostetler CA, Mueller D (2019) 3+2 + X: what is the most useful depolarization input for retrieving microphysical properties of non-spherical particles from lidar measurements using the spheroid model of Dubovik et al. (2006)

    Google Scholar 

  • Tolocka MP, Turpin B (2012) Contribution of organosulfur compounds to organic aerosol mass. Environ Sci Technol 46:7978–7983. https://doi.org/10.1021/es300651v

    Article  ADS  Google Scholar 

  • van de Hulst HC (1957) Light scattering by small particles. Courier Corporation

    Google Scholar 

  • Veselovskii I, Goloub P, Podvin T, Bovchaliuk V, Derimian Y, Augustin P, Fourmentin M, Tanre D, Korenskiy M, Whiteman DN, Diallo A, Ndiaye T, Kolgotin A, Dubovik O (2016) Retrieval of optical and physical properties of African dust from multiwavelength Raman lidar measurements during the SHADOW campaign in Senegal. Atmos Chem Phys 16:7013–7028. https://doi.org/10.5194/acp-16-7013-2016

    Article  ADS  Google Scholar 

  • Videen G, Muinonen K (2015) Light-scattering evolution from particles to regolith. J Quant Spectrosc Radiat Transf 150:87–94. https://doi.org/10.1016/j.jqsrt.2014.05.019

    Article  ADS  Google Scholar 

  • Videen G, Zubko E, Arnold JA, MacCall B, Weinberger AJ, Shkuratov Y, Muñoz O (2018) On the interpolation of light-scattering responses from irregularly shaped particles. J Quant Spectrosc Radiat Transf 211:123–128. https://doi.org/10.1016/j.jqsrt.2018.03.009

    Article  ADS  Google Scholar 

  • Vitkin IA, Studinski RCN (2001) Polarization preservation in diffusive scattering from in vivo turbid biological media: effects of tissue optical absorption in the exact backscattering direction. Opt Commun 190:37–43

    Google Scholar 

  • Volten H, Muñoz O, Rol E, de Haan JF, Vassen W, Hovenier JW, Muinonen K, Nousiainen T (2001) Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm. J Geophys Res 106:17375. https://doi.org/10.1029/2001JD900068

  • Wang X, Lai J, Li Z (2012) Polarization studies for backscattering of RBC suspensions based on Mueller matrix decomposition. Opt Express 20:20771

    Article  ADS  Google Scholar 

  • Wiersma DS, Bartolini P, Lagendijk A, Righini R (1997) Localization of light in a disordered medium. Nature 390:671–673. https://doi.org/10.1038/37757

    Article  ADS  Google Scholar 

  • Winker DM, Pelon JR, McCormick MP (2003) The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds. In: Singh UN, Itabe T, Liu Z (eds) Presented at the Third international asia-pacific environmental remote sensing remote sensing of the atmosphere, ocean, environment, and space, Hangzhou, China, p. 1. https://doi.org/10.1117/12.466539

  • Zhang Y, Chen Y, Lambe AT, Olson NE, Lei Z, Craig RL, Zhang Z, Gold A, Onasch TB, Jayne JT, Worsnop DR, Gaston CJ, Thornton JA, Vizuete W, Ault AP, Surratt JD (2018) Effect of the Aerosol-Phase State on secondary organic aerosol formation from the reactive uptake of isoprene-derived epoxydiols (IEPOX). Environ Sci Technol Lett 5:167–174. https://doi.org/10.1021/acs.estlett.8b00044

    Article  Google Scholar 

  • Zong R, Weng F, Bi L, Lin X, Rao C, Li W (2021) Impact of hematite on dust absorption at wavelengths ranging from 0.2 to 1.0 µm: an evaluation of literature data using the T-matrix method. Opt Express 29:17405–17427. https://doi.org/10.1364/OE.427611

    Article  ADS  Google Scholar 

  • Zubko E, Muinonen K, Muñoz O, Nousiainen T, Shkuratov Y, Sun W, Videen G (2013) Light scattering by feldspar particles: comparison of model agglomerate debris particles with laboratory samples. J Quant Spectrosc Radiat Transf 131:175–187. https://doi.org/10.1016/j.jqsrt.2013.01.017

    Article  ADS  Google Scholar 

  • Zubko E, Muinonen K, Shkuratov Y, Videen G, Nousiainen T (2007) Scattering of light by roughened Gaussian random particles. J Quant Spectrosc Radiat Transf 106:604–615. https://doi.org/10.1016/j.jqsrt.2007.01.050

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Miffre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miffre, A. (2022). Light Backscattering by Atmospheric Particles: From Laboratory to Field Experiments. In: Kokhanovsky, A. (eds) Springer Series in Light Scattering. Springer Series in Light Scattering. Springer, Cham. https://doi.org/10.1007/978-3-031-10298-1_5

Download citation

Publish with us

Policies and ethics