Skip to main content

Machine Learning for Slip Angle and Slip Ratio Predictions

  • Chapter
  • First Online:
Intelligent Tire Systems

Abstract

As described in the introduction of tire forces in the previous section, a comprehensive understanding of the tire-road interaction mechanism is essential for vehicle control and safety. In addition to the tire forces, also the slip angle and the slip ratio, which describe the level of tire sliding with respect to the road surface, are valuable for vehicle states monitoring and control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Cheli, E. Sabbioni, M. Pesce, and S. Melzi, “A methodology for vehicle sideslip angle identification: comparison with experimental data,” Vehicle System Dynamics, vol. 45, no. 6, pp. 549–563, 2007.

    Article  Google Scholar 

  2. G. Baffet, A. Charara, D. Lechner, and D. Thomas, “Experimental evaluation of observers for tire–road forces, sideslip angle and wheel cornering stiffness,” Vehicle System Dynamics, vol. 46, no. 6, pp. 501–520, 2008.

    Article  Google Scholar 

  3. M. Viehweger, C. Vaseur, S. van Aalst, M. Acosta, E. Regolin, A. Alatorre, W. Desmet, F. Naets, V. Ivanov, A. Ferrara et al., “Vehicle state and tyre force estimation: demonstrations and guidelines,” Vehicle system dynamics, vol. 59, no. 5, pp. 675–702, 2021.

    Article  Google Scholar 

  4. X. Zhang and D. Göhlich, “A hierarchical estimator development for estimation of tire-road friction coefficient,” PLoS one, vol. 12, no. 2, p. e0171085, 2017.

    Google Scholar 

  5. M. Acosta, S. Kanarachos, and M. Blundell, “Virtual tyre force sensors: An overview of tyre model-based and tyre model-less state estimation techniques,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 232, no. 14, pp. 1883–1930, 2018.

    Google Scholar 

  6. G. Erdogan, S. Hong, F. Borrelli, and K. Hedrick, “Tire sensors for the measurement of slip angle and friction coefficient and their use in stability control systems,” SAE International Journal of Passenger Cars-Mechanical Systems, vol. 4, no. 2011-01-0095, pp. 44–58, 2011.

    Google Scholar 

  7. D. M. Bevly and J. C. Gerdes, “Determination and control of vehicle sideslip using GPS,” Jan. 20 2004, uS Patent 6,681,180.

    Google Scholar 

  8. Y. H. J. Hsu, S. M. Laws, and J. C. Gerdes, “Estimation of tire slip angle and friction limits using steering torque,” IEEE Transactions on Control Systems Technology, vol. 18, no. 4, pp. 896–907, 2009.

    Article  Google Scholar 

  9. C. Lamy, J. Caroux, M. Basset, G. L. Gissinger, D. Poli, and P. Romieu, “Comparison of optical and GPS based tire slip angle estimation,” IFAC Proceedings Volumes, vol. 40, no. 10, pp. 41–46, 2007.

    Article  Google Scholar 

  10. R. Matsuzaki, K. Kamai, and R. Seki, “Intelligent tires for identifying coefficient of friction of tire/road contact surfaces using three-axis accelerometer,” Smart Materials and Structures, vol. 24, no. 2, p. 025010, 2014.

    Google Scholar 

  11. G. Erdogan, L. Alexander, and R. Rajamani, “A novel wireless piezoelectric tire sensor for the estimation of slip angle,” Measurement Science and Technology, vol. 21, no. 1, p. 015201, 2009.

    Google Scholar 

  12. A. Rezaeian, A. Khajepour, W. Melek, S. K. Chen, and N. Moshchuk, “Simultaneous vehicle real-time longitudinal and lateral velocity estimation,” IEEE Transactions on Vehicular Technology, vol. 66, no. 3, pp. 1950–1962, 2016.

    Article  Google Scholar 

  13. L. Imsland, T. A. Johansen, T. I. Fossen, H. F. Grip, J. C. Kalkkuhl, and A. Suissa, “Vehicle velocity estimation using nonlinear observers,” Automatica, vol. 42, no. 12, pp. 2091–2103, 2006.

    Article  MathSciNet  Google Scholar 

  14. D. M. Bevly, “Global positioning system (GPS): A low-cost velocity sensor for correcting inertial sensor errors on ground vehicles,” J. Dyn. Sys., Meas., Control, vol. 126, no. 2, pp. 255–264, 2004.

    Google Scholar 

  15. S. Rafatnia, H. Nourmohammadi, J. Keighobadi, and M. Badamchizadeh, “In-move aligned SINS/GNSS system using recurrent wavelet neural network (RWNN)-based integration scheme,” Mechatronics, vol. 54, pp. 155–165, 2018.

    Article  Google Scholar 

  16. J. Lv, H. He, W. Liu, Y. Chen, and F. Sun, “Vehicle velocity estimation fusion with kinematic integral and empirical correction on multi-timescales,” Energies, vol. 12, no. 7, p. 1242, 2019.

    Google Scholar 

  17. L. H. Zhao, Z. Y. Liu, and H. Chen, “Design of a nonlinear observer for vehicle velocity estimation and experiments,” IEEE Transactions on Control Systems Technology, vol. 19, no. 3, pp. 664–672, 2010.

    Article  Google Scholar 

  18. T. A. Wenzel, K. Burnham, M. Blundell, and R. Williams, “Dual extended kalman filter for vehicle state and parameter estimation,” Vehicle system dynamics, vol. 44, no. 2, pp. 153–171, 2006.

    Article  Google Scholar 

  19. S. Antonov, A. Fehn, and A. Kugi, “Unscented Kalman filter for vehicle state estimation,” Vehicle System Dynamics, vol. 49, no. 9, pp. 1497–1520, 2011.

    Article  Google Scholar 

  20. H. Guo, H. Chen, F. Xu, F. Wang, and G. Lu, “Implementation of EKF for vehicle velocities estimation on FPGA,” IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3823–3835, 2012.

    Article  Google Scholar 

  21. S. Rafatnia and M. Mirzaei, “Adaptive estimation of vehicle velocity from updated dynamic model for control of anti-lock braking system,” IEEE Transactions on Intelligent Transportation Systems, 2021.

    Google Scholar 

  22. G. A. Magallan, C. H. De Angelo, and G. O. Garcia, “Maximization of the traction forces in a 2WD electric vehicle,” IEEE Transactions on Vehicular Technology, vol. 60, no. 2, pp. 369–380, 2010.

    Article  Google Scholar 

  23. M. Jalali, E. Hashemi, A. Khajepour, S. k. Chen, and B. Litkouhi, “Integrated model predictive control and velocity estimation of electric vehicles,” Mechatronics, vol. 46, pp. 84–100, 2017.

    Google Scholar 

  24. G. Park, S. B. Choi, D. Hyun, and J. Lee, “Integrated observer approach using in-vehicle sensors and GPS for vehicle state estimation,” Mechatronics, vol. 50, pp. 134–147, 2018.

    Article  Google Scholar 

  25. Y. Hori, Y. Toyoda, and Y. Tsuruoka, “Traction control of electric vehicle: basic experimental results using the test EV "UOT electric march",” IEEE transactions on Industry Applications, vol. 34, no. 5, pp. 1131–1138, 1998.

    Google Scholar 

  26. K. Maeda, H. Fujimoto, and Y. Hori, “Four-wheel driving-force distribution method based on driving stiffness and slip ratio estimation for electric vehicle with in-wheel motors,” in 2012 IEEE Vehicle Power and Propulsion Conference. IEEE, 2012, pp. 1286–1291.

    Google Scholar 

  27. T. Vo Duy and M. C. Ta, “Slip ratio estimation for traction control of electric vehicles,” in 2018 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2018, pp. 1–6.

    Google Scholar 

  28. M. Boisvert and P. Micheau, “Estimators of wheel slip for electric vehicles using torque and encoder measurements,” Mechanical Systems and Signal Processing, vol. 76, pp. 665–676, 2016.

    Article  Google Scholar 

  29. K. Guo and D. Lu, “UniTire: unified tire model for vehicle dynamic simulation,” Vehicle System Dynamics, vol. 45, no. S1, pp. 79–99, 2007.

    Article  Google Scholar 

  30. H. B. Pacejka and E. Bakker, “The magic formula tyre model,” Vehicle system dynamics, vol. 21, no. S1, pp. 1–18, 1992.

    Article  Google Scholar 

  31. N. Xu, H. Askari, Y. Huang, J. Zhou, and A. Khajepour, “Tire force estimation in intelligent tires using machine learning,” IEEE Transactions on Intelligent Transportation Systems, 2020.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, N., Askari, H., Khajepour, A. (2022). Machine Learning for Slip Angle and Slip Ratio Predictions. In: Intelligent Tire Systems. Synthesis Lectures on Advances in Automotive Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-10268-4_5

Download citation

Publish with us

Policies and ethics