Skip to main content

Rare-Event Simulation via Neural Networks

  • Chapter
  • First Online:
Advances in Modeling and Simulation

Abstract

We present a neural network framework for the simulation of independent random variables from arbitrary distributions. The framework includes two neural networks that are trained simultaneously using a target function, rather than a target dataset. One is a generative model that maps samples from a joint normal distribution to samples in the target space. The second network estimates the probability density of these samples, trained with targets obtained via kernel density estimation. The effectiveness of the approach is illustrated with various examples from rare-event simulation. The generator was able to learn all the 1-dimensional distribution examples well enough to pass the Kolmogorov–Smirnov test. However, estimates of higher-dimensional probability densities were limited by the kernel density estimation. Refining the density estimates of the generated samples is a clear way to improve the accuracy of the method when learning more complex higher dimensional distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Actually, in the code the density network output activation function is the identity function, but the output is interpreted as the log-density.

References

  1. Aarts, E.H.L., Korst, J.H.M.: Simulated Annealing and Boltzmann Machines. Wiley, Chichester (1989)

    MATH  Google Scholar 

  2. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. Software available from tensorflow.org

  3. Andradóttir, S.: A global search method for discrete stochastic optimization. SIAM J. Optim. 6, 513–530 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Asmussen, S., Glynn, P.W.: Stochastic Simulation. Springer, New York (2007)

    MATH  Google Scholar 

  5. Asmussen, S., Kroese, D.P.: Improved algorithms for rare event simulation with heavy tails. Adv. Appl. Probab. 38(2), 545–558 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blanchet, J.: Importance sampling and efficient counting for binary contingency tables. Ann. Appl. Probab. 19, 949–982 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Botev, Z.I., Kroese, D.P., Rubinstein, R., L’Ecuyer, P.: The cross-entropy method for optimization. In: V. Govindaraju, C. Rao (eds.) Handbook of Statistics, vol. 31: Machine Learning, pp. 19–34. Elsevier, Chennai (2013)

    Google Scholar 

  8. Botev, Z.I., L’Ecuyer, P., Simard, R., Tuffin, B.: Static network reliability estimation under the Marshall–Olkin copula. ACM Trans. Model. Comput. Simul. 26(2) (2016). https://doi.org/10.1145/2775106

  9. Brooks, S., Gelman, A., Jones, G., Meng, X.L.: Handbook of Markov Chain Monte Carlo. CRC Press, Boca Raton (2011)

    Google Scholar 

  10. Bucklew, J.A.: Introduction to Rare Event Simulation. Springer, New York (2004)

    Book  MATH  Google Scholar 

  11. Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: a survey (2019)

    Google Scholar 

  12. Devroye, L.: Non-Uniform Random Variate Generation. Springer, New York (1986)

    Book  MATH  Google Scholar 

  13. Fishman, G.S.: Discrete Event Simulation: Modeling, Programming, and Analysis. Springer, New York (2001)

    Book  MATH  Google Scholar 

  14. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2004)

    MATH  Google Scholar 

  15. Glasserman, P., Heidelberger, P., Shahabuddin, P., Zajic, T.: A look at multilevel splitting. In: Niederreiter, H. (ed.) Monte Carlo and Quasi Monte Carlo Methods 1996. Lecture Notes in Statistics, vol. 127, pp. 99–108. Springer, New York (1996)

    Google Scholar 

  16. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020). https://doi.org/10.1145/3422622.

    Article  MathSciNet  Google Scholar 

  17. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 92–109 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991). https://doi.org/10.1016/0893-6080(91)90009-T

  19. Kahn, H., Harris, T.E.: Estimation of particle transmission by random sampling. National Bureau of Standards Applied Mathematics Series (1951)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

    Google Scholar 

  21. Kingma, D.P., Welling, M.: An introduction to variational autoencoders. Foundations and Trends® in Machine Learning 12(4), 307–392 (2019). https://doi.org/10.1561/2200000056

  22. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, New York (1992). Corrected third printing

    Google Scholar 

  23. Kroese, D., Rubinstein, R.Y., Glynn, P.W.: The cross-entropy method for estimation. In: V. Govindaraju, C. Rao (eds.) Handbook of Statistics, vol. 31: Machine Learning, pp. 35–59. Elsevier, Chennai (2013)

    Google Scholar 

  24. Kroese, D.P., Botev, Z.I.: Spatial process simulation. In: V. Schmidt (ed.) Lectures on Stochastic Geometry, Spatial Statistics and Random Fields, vol. II: Analysis, Modeling and Simulation of Complex Structures. Springer, Berlin (2014)

    Google Scholar 

  25. Kroese, D.P., Botev, Z.I., Taimre, T., Vaisman, R.: Data Science and Machine Learning: Mathematical and Statistical Methods. Chapman and Hall/CRC, Boca Raton (2019)

    Book  MATH  Google Scholar 

  26. Kroese, D.P., Taimre, T., Botev, Z.I.: Handbook of Monte Carlo Methods. Wiley, New York (2011)

    Google Scholar 

  27. Kullback, S.: Information Theory and Statistics. Wiley, New York (1959)

    MATH  Google Scholar 

  28. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, 3rd edn. McGraw-Hill, New York (2000)

    MATH  Google Scholar 

  29. L’Ecuyer, P.: Random numbers for simulation. Commun. ACM 33(10), 85–97 (1990)

    Article  Google Scholar 

  30. L’Ecuyer, P.: Good parameters and implementations for combined multiple recursive random number generators. Oper. Res. 47(1), 159–164 (1999)

    Article  MATH  Google Scholar 

  31. L’Ecuyer, P., Demers, V., Tuffin, B.: Splitting for rare-event simulation. ACM Trans. Model. Comput. Simul. (TOMACS) 17(2), 1–44 (2007)

    MATH  Google Scholar 

  32. L’Ecuyer, P., Panneton, F.: \({{\mathbb{F} }_2}\)-linear random number generators. In: Alexopoulos, C., Goldsman, D., Wilson, J.R. (eds.) Advancing the Frontiers of Simulation: A Festschrift in Honor of George Samuel Fishman, pp. 175–200. Springer, New York (2009)

    Google Scholar 

  33. L’Ecuyer, P., Simard, R.: TestU01: a C library for empirical testing of random number generators. ACM Trans. Math. Softw. 33(4) (2007). Article 22

    Google Scholar 

  34. Lieber, D., Rubinstein, R.Y., Elmakis, D.: Quick estimation of rare events in stochastic networks. IEEE Trans. Reliab. 46, 254–265 (1997)

    Article  Google Scholar 

  35. Magdon-Ismail, M., Atiya, A.: Density estimation and random variate generation using multilayer networks. IEEE Trans. Neural Netw. 13(3), 497–520 (2002). https://doi.org/10.1109/TNN.2002.1000120

    Article  Google Scholar 

  36. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

  37. McLeish, D.L.: Monte Carlo Simulation and Finance. Wiley, New York (2005)

    MATH  Google Scholar 

  38. Otter, D.W., Medina, J.R., Kalita, J.K.: A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 32(2), 604–624 (2021). https://doi.org/10.1109/TNNLS.2020.2979670

    Article  MathSciNet  Google Scholar 

  39. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  40. Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte Carlo Simulation and Machine Learning. Springer, New York (2004)

    Google Scholar 

  41. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986). https://doi.org/10.1038/323533a0.

    Article  MATH  Google Scholar 

  42. Siegmund, D.: Importance sampling in the Monte Carlo study of sequential tests. Ann. Stat. 4, 673–684 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tsoucas, P.: Rare events in series of queues. J. Appl. Probab. 29, 168–175 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  44. Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018, 7068349 (2018). https://doi.org/10.1155/2018/7068349.

    Article  Google Scholar 

  45. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a survey and new perspectives. ACM Comput. Surv. 52(1) (2019). https://doi.org/10.1145/3285029

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lachlan J. Gibson .

Editor information

Editors and Affiliations

Appendix

Appendix

figure d

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gibson, L.J., Kroese, D.P. (2022). Rare-Event Simulation via Neural Networks. In: Botev, Z., Keller, A., Lemieux, C., Tuffin, B. (eds) Advances in Modeling and Simulation. Springer, Cham. https://doi.org/10.1007/978-3-031-10193-9_8

Download citation

Publish with us

Policies and ethics