Skip to main content

Where are the Logs?

  • Chapter
  • First Online:
Advances in Modeling and Simulation

Abstract

The commonly quoted error rates for QMC integration with an infinite low discrepancy sequence is \(O(n^{-1}\log (n)^r)\) with \(r=d\) for extensible sequences and \(r=d-1\) otherwise. Such rates hold uniformly over all d dimensional integrands of Hardy-Krause variation one when using n evaluation points. Implicit in those bounds is that for any sequence of QMC points, the integrand can be chosen to depend on n. In this paper we show that rates with any \(r<(d-1)/2\) can hold when f is held fixed as \(n\rightarrow \infty \). This is accomplished following a suggestion of Erich Novak to use some unpublished results of Trojan from the 1980s as given in the information based complexity monograph of Traub, Wasilkowski and Woźniakowski. The proof is made by applying a technique of Roth with the theorem of Trojan. The proof is non constructive and we do not know of any integrand of bounded variation in the sense of Hardy and Krause for which the QMC error exceeds \((\log n)^{1+\epsilon }/n\) for infinitely many n when using a digital sequence such as one of Sobol’s. An empirical search when \(d=2\) for integrands designed to exploit known weaknesses in certain point sets showed no evidence that \(r>1\) is needed. An example with \(d=3\) and n up to \(2^{100}\) might possibly require \(r>1\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bratley, P., Fox, B.L., Niederreiter, H.: Implementation and tests of low-discrepancy sequences. ACM Trans. Model. Comput. Simul. (TOMACS) 2(3), 195–213 (1992)

    Article  MATH  Google Scholar 

  2. Chen, W.W.L., Travaglini, G.: Some of Roth’s ideas in discrepancy theory. In: Analytic Number Theory: Essays in Honour of Klaus Roth, pp. 150–163. Cambridge University Press, Cambridge, UK (2009)

    Google Scholar 

  3. Dick, J., Sloan, I.H., Wang, X., Woźniakowski, H.: Liberating the weights. J. Complex. 20(5), 593–623 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dick, J., Hinrichs, A., Pillichshammer, F.: Proof techniques in quasi-Monte Carlo theory. J. Complex. 31(3), 327–371 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Drmota, M., Larcher, G., Pillichshammer, F.: Precise distribution properties of the van der Corput sequence and related sequences. Manuscripta Mathematica 118(1), 11–41 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Faure, H.: Discrépance de suites associées à un système de numération (en dimension s). Acta Arithmetica 41, 337–351 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Faure, H., Lemieux, C.: A variant of Atanassov’s method for (t, s)-sequences and (t, e, s)-sequences. J. Complex. 30(5), 620–633 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Halasz, G.: On Roth’s method in the theory of irregularities of point distributions. Recent Progress in Analytic Number Theory, vol. 2, pp. 79–94 (1981)

    Google Scholar 

  9. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik 2(1), 84–90 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hickernell, F.J.: Koksma-Hlawka Inequality. Wiley StatsRef: Statistics Reference Online (2014)

    Google Scholar 

  11. Joe, S., Kuo, F.Y.: Constructing Sobol’ sequences with better two-dimensional projections. SIAM J. Sci. Comput. 30(5), 2635–2654 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. L’Ecuyer, P.: Randomized quasi-Monte Carlo: an introduction for practitioners. In: Owen, A.B., Glynn, P.W. (eds.) International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pp. 29–52. Springer (2018)

    Google Scholar 

  13. L’Ecuyer, P., Lemieux, C.: A survey of randomized quasi-Monte Carlo methods. In: Dror, M., L’Ecuyer, P., Szidarovszki, F. (eds.) Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, pp. 419–474. Kluwer Academic Publishers (2002)

    Google Scholar 

  14. Niederreiter, H.: Point sets and sequences with small discrepancy. Monatshefte fur mathematik 104(4), 273–337 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, PA (1992)

    Book  MATH  Google Scholar 

  16. Owen, A.B.: Scrambled net variance for integrals of smooth functions. Ann. Stat. 25(4), 1541–1562 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Owen, A.B.: Scrambling Sobol’ and Niederreiter-Xing points. J. Complex. 14(4), 466–489 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Owen, A.B.: Multidimensional variation for quasi-Monte Carlo. In: Fan, J., Li, G. (eds.) International Conference on Statistics in Honour of Professor Kai-Tai Fang’s 65th Birthday (2005)

    Google Scholar 

  19. Owen, A.B.: Local antithetic sampling with scrambled nets. Ann. Stat. 36(5), 2319–2343 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pan, Z., Owen, A.B.: The nonzero gain coefficients of Sobol’s sequences are always powers of two. Technical Report arXiv:2106.10534, Stanford University (2021)

  21. Roth, K.F.: On irregularities of distribution. Mathematica 1(2), 73–79 (1954)

    MathSciNet  MATH  Google Scholar 

  22. Schlier, Ch.: Error trends in quasi-Monte Carlo integration. Comput. Phys. Commun. 159(2), 93–105 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schürer, R., Schmid, W.C.: MinT-new features and new results. In: L’Ecuyer, P., Owen, A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2008, pp. 501–512. Springer, Berlin (2009)

    Google Scholar 

  24. Sobol’, I.M.: The distribution of points in a cube and the accurate evaluation of integrals. USSR Comput. Math. Math. Phys. 7(4), 86–112 (1967)

    Article  MATH  Google Scholar 

  25. Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-Based Complexity. Academic Press, San Diego, CA (1988)

    MATH  Google Scholar 

  26. van der Corput, J.G.: Verteilungsfunktionen I. Nederl. Akad. Wetensch. Proc. 38, 813–821 (1935)

    Google Scholar 

  27. Woźniakowski, H.: Average case complexity of multivariate integration. Bull. (New Series) Am. Math. Soc. 24(1), 185–194 (1991)

    Google Scholar 

  28. Yue, R.X., Mao, S.S.: On the variance of quadrature over scrambled nets and sequences. Stat. Probab. Lett. 44(3), 267–280 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Pierre L’Ecuyer on the occasion of his 70th birthday. Pierre has made singular contributions to Monte Carlo and quasi-Monte Carlo. His influence goes well beyond establishing theoretical results by also providing computational tools, definitive survey articles, and papers with exemplary applications, on top of service to those fields through editorial work and conference organization.

This work was supported by the U.S. NSF under grant IIS-1837931. Thanks to Fred Hickernell and Erich Novak for discussions related to this problem. We are also grateful to Traub, Wasilkowski and Woźniakowski for ensuring that Trojan’s work was not lost. Finally we thank two reviewers for their helpful comments. Finally, we thank the festschrift organizers, Bruno Tuffin, Christiane Lemieux, Alex Keller and Zdravko Botev for organizing this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Art B. Owen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Owen, A.B., Pan, Z. (2022). Where are the Logs?. In: Botev, Z., Keller, A., Lemieux, C., Tuffin, B. (eds) Advances in Modeling and Simulation. Springer, Cham. https://doi.org/10.1007/978-3-031-10193-9_19

Download citation

Publish with us

Policies and ethics