Skip to main content

Array-RQMC to Speed up the Simulation for Estimating the Hitting-Time Distribution to a Rare Set of a Regenerative System

  • Chapter
  • First Online:
Advances in Modeling and Simulation

Abstract

Estimating the distribution of the hitting time to a rarely visited set of states presents substantial challenges. We recently designed simulation-based estimators to exploit existing theory for regenerative systems that a scaled geometric sum of independent and identically distributed random variables weakly converges to an exponential random variable as the geometric’s parameter vanishes. The resulting approximation then reduces the estimation of the distribution to estimating just the mean of the limiting exponential variable. The present work examines how randomized quasi-Monte Carlo (RQMC) techniques can help to reduce the variance of the estimators. Estimating hitting-time properties entails simulating a stochastic (here Markov) process, for which the so-called array-RQMC method is suited. After describing its application, we illustrate numerically the gain on a standard rare-event problem. This chapter combines ideas from several areas in which Pierre L’Ecuyer has made fundamental theoretical and methodological contributions: randomized quasi-Monte Carlo methods, rare-event simulation, and distribution estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben Abdellah, A., L’Ecuyer, P., Owen, A., Puchhammer, F.: Density estimation by randomized quasi-Monte Carlo. SIAM J. Uncertain. Quantif. 9(1), 280–301 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge, U.K. (2010)

    Book  MATH  Google Scholar 

  3. Fox, B.L., Glynn, P.W.: Discrete time conversion for simulating semi-Markov processes. Oper. Res. Lett. 5, 191–196 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Glynn, P.W., Nakayama, M.K., Tuffin, B.: Using simulation to calibrate exponential approximations to tail-distribution measures of hitting times to rarely visited sets. In: Proceedings of the 2018 Winter Simulation Conference. Institute of Electrical and Electronics Engineers, Piscataway, NJ (2018)

    Google Scholar 

  5. Glynn, P.W., Nakayama, M.K., Tuffin, B.: Comparing regenerative-simulation-based estimators of the distribution of the hitting time to a rarely visited set. In: Bae, K.H., Feng, B., Kim, S., Lazarova-Molnar, S., Zheng, Z., Roeder, T., Thiesing, R. (eds.) Proceedings of the 2020 Winter Simulation Conference. IEEE, Piscataway, New Jersey (2020)

    Google Scholar 

  6. Goyal, A., Shahabuddin, P., Heidelberger, P., Nicola, V., Glynn, P.W.: A unified framework for simulating Markovian models of highly dependable systems. IEEE Trans. Comput. C-41(1), 36–51 (1992)

    Google Scholar 

  7. Heidelberger, P.: Fast simulation of rare events in queueing and reliability models. ACM Trans. Model. Comput. Simul. 5, 43–85 (1995)

    Article  MATH  Google Scholar 

  8. Hickernell, F.J.: Obtaining \({O(N^{-2+\epsilon })}\) convergence for lattice quadrature rules. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 274–289. Springer, Berlin (2002)

    Chapter  Google Scholar 

  9. Hordijk, A., Iglehart, D.L., Schassberger, R.: Discrete-time methods for simulating continuous-time Markov chains. Adv. Appl. Probab. 8, 772–788 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kalashnikov, V.: Topics on Regenerative Processes. CRC Press, Boca Raton (1994)

    Book  MATH  Google Scholar 

  11. Kalashnikov, V.: Geometric Sums: Bounds for Rare Events with Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands (1997)

    Book  MATH  Google Scholar 

  12. Lécot, C., Tuffin, B.: Quasi-Monte Carlo methods for estimating transient measures of discrete time Markov chains. In: Niederreiter, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2002, pp. 329–343. Springer, Berlin (2004)

    Chapter  MATH  Google Scholar 

  13. L’Ecuyer, P.: Randomized quasi-Monte Carlo: an introduction for practitioners. In: Glynn, P.W., Owen, A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC 2016, pp. 29–52. Springer, Berlin (2018)

    Chapter  MATH  Google Scholar 

  14. L’Ecuyer, P., Blanchet, J.H., Tuffin, B., Glynn, P.W.: Asymptotic robustness of estimators in rare-event simulation. ACM Trans. Model. Comput. Simul. 20(1), Article 6 (2010)

    Google Scholar 

  15. L’Ecuyer, P., Demers, V., Tuffin, B.: Rare-events, splitting, and quasi-Monte Carlo. ACM Trans. Model. Comput. Simul. 17(2), Article 9, 45 (2007)

    Google Scholar 

  16. L’Ecuyer, P., Lécot, C., Tuffin, B.: Randomized quasi-Monte Carlo simulation of Markov chains with an ordered state space. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 331–342. Springer, Berlin (2006)

    Chapter  MATH  Google Scholar 

  17. L’Ecuyer, P., Lécot, C., Tuffin, B.: A randomized quasi-Monte Carlo simulation method for Markov chains. Oper. Res. 56(4), 958–975 (2008)

    Article  MATH  Google Scholar 

  18. L’Ecuyer, P., Lemieux, C.: Variance reduction via lattice rules. Manage. Sci. 46(9), 1214–1235 (2000)

    Article  MATH  Google Scholar 

  19. L’Ecuyer, P., Marion, P., Godin, M., Fuchhammer, F.: A tool for custom construction of QMC and RQMC point sets. In: Monte Carlo and Quasi-Monte Carlo Methods: MCQMC 2020 (2020). https://arxiv.org/abs/2012.10263

  20. L’Ecuyer, P., Munger, D., Lécot, C., Tuffin, B.: Sorting methods and convergence rates for Array-RQMC: some empirical comparisons. Math. Comput. Simul. 143, 191–201 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. L’Ecuyer, P., Puchhammer, F., Ben Abdellah, A.: Monte Carlo and quasi-Monte Carlo density estimation via conditioning. INFORMS J. Comput. (2021). To appear. arXiv:1906.04607

  22. Matousěk, J.: On the \(L_2\)-discrepancy for anchored boxes. J. Complex. 14, 527–556 (1998)

    Article  MATH  Google Scholar 

  23. Nakayama, M.K., Tuffin, B.: Efficient estimation of the mean hitting time to a set of a regenerative system. In: Mustafee, N., Bae, K.H., Lazarova-Molnar, S., Rabe, M., Szabo, C., Haas, P., Son, Y.J. (eds.) Proceedings of the 2019 Winter Simulation Conference, pp. 416–427. Institute of Electrical and Electronics Engineers, Piscataway, New Jersey (2019)

    Google Scholar 

  24. Nakayama, M.K., Tuffin, B.: Sufficient conditions for central limit theorems and confidence intervals for randomized quasi-Monte Carlo methods. Techreport hal-03196085, INRIA (2021). https://hal.inria.fr/hal-03196085

  25. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods, vol. 63. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  26. Owen, A.B.: Latin supercube sampling for very high-dimensional simulations. ACM Trans. Model. Comput. Simul. 8(1), 71–102 (1998)

    Article  MATH  Google Scholar 

  27. Rubino, G., Tuffin, B. (eds.): Rare Event Simulation using Monte Carlo Methods. Wiley, Chichester, UK (2009)

    MATH  Google Scholar 

  28. Sadowsky, J.S.: Large deviations theory and efficient simulation of excessive backlogs in a GI/GI/\(m\) queue. IEEE Trans. Autom. Control 36, 1383–1394 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shahabuddin, P.: Importance sampling for highly reliable Markovian systems. Manage. Sci. 40(3), 333–352 (1994)

    Article  MATH  Google Scholar 

  30. Tuffin, B.: On the use of low discrepancy sequences in Monte Carlo methods. Monte Carlo Methods Appl. 2(4), 295–320 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tuffin, B.: Variance reduction order using good lattice points in Monte Carlo methods. Computing 61(4), 371–378 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Tuffin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakayama, M.K., Tuffin, B. (2022). Array-RQMC to Speed up the Simulation for Estimating the Hitting-Time Distribution to a Rare Set of a Regenerative System. In: Botev, Z., Keller, A., Lemieux, C., Tuffin, B. (eds) Advances in Modeling and Simulation. Springer, Cham. https://doi.org/10.1007/978-3-031-10193-9_17

Download citation

Publish with us

Policies and ethics