Skip to main content

Rendering Along the Hilbert Curve

  • Chapter
  • First Online:
Advances in Modeling and Simulation

Abstract

Based on the seminal work on Array-RQMC methods and rank-1 lattice sequences by Pierre L’Ecuyer and collaborators, we introduce efficient deterministic algorithms for image synthesis. Enumerating a low discrepancy sequence along the Hilbert curve superimposed on the raster of pixels of an image, we achieve noise characteristics that are desirable with respect to the human visual system, especially at very low sampling rates. As compared to the state of the art, our simple algorithms neither require randomization, nor costly optimization, nor lookup tables. We analyze correlations of space-filling curves and low discrepancy sequences, and demonstrate the benefits of the new algorithms in a professional, massively parallel light transport simulation and rendering system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramov, G.: US patent #6,911,976: System and method for rendering images using a strictly-deterministic methodology for generating a coarse sequence of sample points (2002). Assignee: mental images GmbH. Berlin, DE

    Google Scholar 

  2. Ahmed, A.G.M., Wonka, P.: Screen-space blue-noise diffusion of Monte Carlo sampling error via hierarchical ordering of pixels. ACM Trans. Graph. 39(6) (2020). https://doi.org/10.1145/3414685.3417881

  3. van Antwerpen, D., Seibert, D., Keller, A.: A simple load-balancing scheme with high scaling efficiency. In: E. Haines, T. Akenine-Möller (eds.) Ray Tracing Gems. Apress (2019). http://raytracinggems.com

  4. Binder, N., Fricke, S., Keller, A.: Massively parallel path space filtering. In: Keller, A. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2020. Springer (2022). http://arxiv.org/abs/1902.05942

  5. Cook, R.L.: Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 51–72 (1986)

    Article  Google Scholar 

  6. Cranley, R., Patterson, T.: Randomization of number theoretic methods for multiple integration. SIAM J. Numer. Anal. 13, 904–914 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ernst, M., Stamminger, M., Greiner, G.: Filter importance sampling. In: Proceedings of 2006 IEEE/EG Symposium on Interactive Ray Tracing, pp. 125–132 (2006)

    Google Scholar 

  8. Faure, H.: Good permutations for extreme discrepancy. J. Number Theory 42, 47–56 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Faure, H., Lemieux, C.: Generalized Halton sequences in 2008: A comparative study. ACM Trans. Model. Comp. Simul. 19(4), 15:1–15:31 (2009)

    Google Scholar 

  10. Georgiev, I., Fajardo, M.: Blue-noise dithered sampling. ACM SIGGRAPH 2016 Talks (2016)

    Google Scholar 

  11. Gerber, M., Chopin, N.: Sequential quasi Monte Carlo. J. Roy. Stat. Soc. Ser. B (Statistical Methodology) 77(3), 509–579 (2015). http://www.jstor.org/stable/24774819

  12. Grünschloß, L., Raab, M., Keller, A.: Enumerating quasi-Monte Carlo point sequences in elementary intervals. In: Plaskota, L., Woźniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 399–408. Springer (2012). http://gruenschloss.org/sample-enum/sample-enum.pdf

  13. Heitz, E., Belcour, L., Ostromoukhov, V., Coeurjolly, D., Iehl, J.C.: A low-discrepancy sampler that distributes Monte Carlo errors as a blue noise in screen space. In: SIGGRAPH’19 Talks. ACM, Los Angeles, United States (2019). https://hal.archives-ouvertes.fr/hal-02150657

  14. Hickernell, F., Hong, H., L’Ecuyer, P., Lemieux, C.: Extensible lattice sequences for quasi-Monte Carlo quadrature. SIAM J. Sci. Comput. 22, 1117–1138 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Keller, A.: Quasi-Monte Carlo image synthesis in a nutshell. In: Dick, J., Kuo, F., Peters, G., Sloan, I. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, pp. 203–238. Springer (2013)

    Google Scholar 

  16. Keller, A., Binder, N., Wächter, C.: Construction of a rank-1 lattice sequence based on primitive polynomials. In: Larcher, G., Pillichshammer, F., Winterhof, A., Xing, C. (eds.) Applied Algebra and Number Theory, pp. 204–215. Cambridge University Press (2014). 10.1017/CBO9781139696456.013

    Google Scholar 

  17. Keller, A., Georgiev, I., Ahmed, A., Christensen, P., Pharr, M.: My favorite samples. In: ACM SIGGRAPH 2019 Courses, SIGGRAPH ’19, pp. 15:1–15:271. ACM, New York, NY, USA (2019). https://doi.org/10.1145/3305366.3329901

  18. Keller, A., Grünschloß, L.: Parallel quasi-Monte Carlo integration by partitioning low discrepancy sequences. In: Plaskota, L., Woźniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 487–498. Springer (2012). http://gruenschloss.org/parqmc/parqmc.pdf

  19. Keller, A., Wächter, C., Raab, M., Seibert, D., Antwerpen, D., Korndörfer, J., Kettner, L.: The Iray light transport simulation and rendering system (2017). CoRR abs/ arXiv:1705.01263

  20. Kocis, L., Whiten, W.: Computational investigations of low-discrepancy sequences. ACM Trans. Math. Softw. 23(2), 266–294 (1997). http://doi.acm.org/10.1145/264029.264064

  21. L’Ecuyer, P., Munger, D., Lécot, C., Tuffin, B.: Sorting methods and convergence rates for Array-RQMC: Some empirical comparisons. In: Mathematics and Computers in Simulation, vol. 143 (2018)

    Google Scholar 

  22. Liu, H., Han, H., Jiang, M.: Rank-1 lattices for efficient path integral estimation. Comput. Graph. Forum 40(2), 91–102 (2021)

    Google Scholar 

  23. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  24. Owen, A.: Randomly permuted \((t,m,s)\)-nets and \((t,s)\)-sequences. In: Niederreiter, H., Shiue, P. (eds.) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Lecture Notes in Statistics, vol. 106, pp. 299–315. Springer (1995)

    Google Scholar 

  25. Paulin, L., Coeurjolly, D., Bonneel, N., Iehl, J.C., Keller, A., Ostromoukhov, V.: Matbuilder: Mastering sampling uniformity over projections. ACM Trans. Graph. 41(4), 84:1–84:13 (2022)

    Google Scholar 

  26. Paulin, L., Coeurjolly, D., Iehl, J.C., Bonneel, N., Keller, A., Ostromoukhov, V.: Cascaded Sobol’ sampling. ACM Trans. Graph. 40(6), 274:1–274:13 (2021). https://hal.archives-ouvertes.fr/hal-03358957

  27. Pharr, M., Jacob, W., Humphreys, G.: Physically Based Rendering - From Theory to Implementation, 3rd edn. Morgan Kaufmann (2016)

    Google Scholar 

  28. Velho, L., Gomes, J.d.M.: Digital halftoning with space filling curves. In: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’91, p. 81–90. Association for Computing Machinery, New York, NY, USA (1991). https://doi.org/10.1145/122718.122727

  29. Wächter, C., Keller, A.: Efficient simultaneous simulation of Markov chains. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 669–684. Springer (2007)

    Google Scholar 

  30. Yellot, J.: Spectral consequences of photoreceptor sampling in the rhesus retina. Science 221, 382–385 (1983)

    Article  Google Scholar 

  31. Zaremba, S.: La discrépance isotrope et l’intégration numérique. Ann. Mat. Pura Appl. 87, 125–136 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Keller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keller, A., Wächter, C., Binder, N. (2022). Rendering Along the Hilbert Curve. In: Botev, Z., Keller, A., Lemieux, C., Tuffin, B. (eds) Advances in Modeling and Simulation. Springer, Cham. https://doi.org/10.1007/978-3-031-10193-9_16

Download citation

Publish with us

Policies and ethics