Skip to main content

A Central Limit Theorem For Empirical Quantiles in the Markov Chain Setting

  • Chapter
  • First Online:
Advances in Modeling and Simulation

Abstract

We provide a new proof of a central limit theorem for empirical quantiles in the positive-recurrent Markov process setting under conditions that are essentially tight. We also establish the validity of the method of nonoverlapping batch means with a fixed number of batches for interval estimation of the quantile. The conditions of these results are likely to be difficult to verify in practice, and so we also provide more easily verified sufficient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexopoulos, C., Goldsman, D., Mokashi, A.C., Tien, K.W., Wilson, J.R.: Sequest: a sequential procedure for estimating quantiles in steady-state simulations. Oper. Res. 67(4), 1162–1183 (2019). https://doi.org/10.1287/opre.2018.1829

  2. Alexopoulos, C., Goldsman, D., Wilson, J.R.: A new perspective on batched quantile estimation. In: Laroque, C., Himmelspach, J., Pasupathy, R., Rose, O., Uhrmacher, A.M. (eds.) Proceedings of the 2012 Winter Simulation Conference. IEEE (2012)

    Google Scholar 

  3. Asmussen, S.: Applied Probability and Queues. Applications of Mathematics: Stochastic Modeling and Applied Probability, vol. 51, 2nd edn. Springer, New York (2003)

    Google Scholar 

  4. Asmussen, S., Glynn, P.W.: Stochastic Simulation: Algorithms and Analysis, Stochastic Modeling and Applied Probability, vol. 57. Springer, New York (2007)

    Book  MATH  Google Scholar 

  5. Athreya, K.B., Pantula, S.G.: Mixing properties of Harris chains and autoregressive processes. J. Appl. Probab. 23, 880–892 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Avramidis, A.N., Wilson, J.R.: Correlation-induction techniques for estimating quantiles in simulation experiments. Oper. Res. 46, 574–592 (1998)

    Article  MATH  Google Scholar 

  7. Babu, G.J., Singh, K.: On deviations between empirical and quantile processes for mixing random variables. J. Multivar. Anal. 8, 532–549 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bekki, J.E., Mackulak, G., Fowler, J.W., Nelson, B.L.: Indirect cycle time quantile estimation using the Cornish-Fisher expansion. IIE Trans. 42, 31–44 (2009)

    Article  Google Scholar 

  9. Bhattacharya, R.N., Rao, R.R.: Normal Approximation and Asymptotic Expansions. Wiley, New York (1976)

    MATH  Google Scholar 

  10. Chen, E.J., Kelton, W.D.: Quantile and tolerance-interval estimation in simulation. Eur. J. Oper. Res. 168, 520–540 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chu, F., Nakayama, M.K.: Confidence intervals for quantiles when applying variance-reduction techniques. ACM Trans. Model. Comput. Simul. 22(2), Article 10 (2012)

    Google Scholar 

  12. Chung, K.L.: A Course in Probability Theory. Probability and Mathematical Statistics, vol. 21, 2nd edn. Academic, San Diego (1974)

    Google Scholar 

  13. Davydov, J.A.: Mixing conditions for Markov chains. Teor. Verojatnost. i Primenen. 18, 321–338 (1973)

    MathSciNet  MATH  Google Scholar 

  14. Dingeç, K.D., Alexopoulos, C., Goldsman, D., Lolos, A., Wilson, J.R.: Geometric-moment contraction of G/G/1 waiting times. In: Botev, Z. et al. (eds.) Advances in Modeling and Simulation, pp. 111–130. Springer (2022)

    Google Scholar 

  15. Doss, C.R., Flegal, J.M., Jones, G.L., Neath, R.C.: Markov chain Monte Carlo estimation of quantiles. Electron. J. Stat. 8(2), 2448–2478 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fishman, G.S.: Monte Carlo: Concepts, Algorithms and Applications. Springer Series in Operations Research. Springer, New York (1996)

    Google Scholar 

  17. Ghosh, J.K.: A new proof of the Bahadur representation of quantiles and an application. Ann. Math. Stat. 42(6), 1957–1961 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (eds.): Markov Chain Monte Carlo in Practice. Chapman & Hall, London (1996)

    MATH  Google Scholar 

  19. Glasserman, P., Heidelberger, P., Shahabuddin, P.: Variance reduction techniques for estimating value-at-risk. Manage. Sci. 46, 1349–1364 (2000)

    Article  MATH  Google Scholar 

  20. Glynn, P.W.: Some topics in regenerative steady-state simulation. Acta Appl. Math. 34, 225–236 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Glynn, P.W.: Importance sampling for Monte Carlo estimation of quantiles. In: Proceedings of the Second International Workshop on Mathematical Methods in Stochastic Simulation and Experimental Design, pp. 180–185 (1996)

    Google Scholar 

  22. Glynn, P.W., Meyn, S.P.: A Liapounov bound for solutions of the Poisson equation. Ann. Probab. 24, 916–931 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Glynn, P.W., Whitt, W.: Limit theorems for cumulative processes. Stoch. Process. Their Appl. 47, 299–314 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Glynn, P.W., Whitt, W.: Necessary conditions in limit theorems for cumulative processes. Stoch. Process. Their Appl. 98, 199–209 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Heidelberger, P., Lewis, P.A.W.: Quantile estimation in dependent sequences. Oper. Res. 32, 185–209 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  26. Henderson, S.G., Glynn, P.W.: Computing densities for Markov chains via simulation. Math. Oper. Res. 26, 375–400 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Henderson, S.G., Glynn, P.W.: Regenerative steady-state simulation of discrete event systems. ACM Trans. Model. Comput. Simul. 11, 313–345 (2001)

    Article  MATH  Google Scholar 

  28. Hesterberg, T.C., Nelson, B.L.: Control variates for probability and quantile estimation. Manage. Sci. 44(9), 1295–1312 (1998)

    Article  MATH  Google Scholar 

  29. Hsu, J.C., Nelson, B.L.: Control variates for quantile estimation. Manage. Sci. 36, 835–851 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Iglehart, D.L.: Simulating stable stochastic systems, VI: quantile estimation. J. Assoc. Comput. Mach. 23, 347–360 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jin, X., Fu, M.C., Xiong, X.: Probabilistic error bounds for simulation quantile estimators. Manage. Sci. 49, 230–246 (2003)

    Article  MATH  Google Scholar 

  32. Karlin, S., Taylor, H.M.: A Second Course in Stochastic Processes. Academic, Boston (1981)

    MATH  Google Scholar 

  33. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, London (1993)

    Book  MATH  Google Scholar 

  34. Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25, 518–548 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Muñoz, D.F.: On the validity of the batch quantile method for Markov chains. Oper. Res. Lett. 38, 223–226 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Muñoz, D.F., Ramírez-López, A.: A note on bias and mean squared error in steady-state quantile estimation. Oper. Res. Lett. 43, 374–377 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nakayama, M.K.: Asymptotically valid confidence intervals for quantiles and values-at-risk when applying Latin hypercube sampling. Int. J. Adv. Syst. Meas. 4, 86–94 (2011)

    Google Scholar 

  38. Nakayama, M.K.: Using sectioning to construct confidence intervals for quantiles when applying importance sampling. In: Laroque, C., Himmelspach, J., Pasupathy, R. Rose, O., Uhrmacher, A.M. (eds.) Proceedings of the 2012 Winter Simulation Conference. IEEE (2012)

    Google Scholar 

  39. Seila, A.F.: A batching approach to quantile estimation in regenerative simulations. Manage. Sci. 28, 573–581 (1982)

    Article  MATH  Google Scholar 

  40. Sen, P.K.: On the Bahadur representation of sample quantiles for sequences of \(\phi \)-mixing random variables. J. Multivar. Anal. 2, 77–95 (1972)

    Article  MathSciNet  Google Scholar 

  41. Serfling, R.J.: Approximation Theorems of Mathematical Statistics. Wiley, New York (1980)

    Book  MATH  Google Scholar 

  42. Sigman, K.: One-dependent regenerative processes and queues in continuous time. Math. Oper. Res. 15(1), 175–189 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sun, L., Hong, L.J.: Asymptotic representations for importance-sampling estimators of value-at-risk and conditional value-at-risk. Oper. Res. Lett. 38, 246–251 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wand, M., Jones, M.: Kernel Smoothing. Chapman & Hall, London (1995)

    Book  MATH  Google Scholar 

  45. Wood, D.C., Schmeiser, B.W.: Overlapping batch quantiles. In: Alexopoulos, C., Kang, K., Lilegdon, W.R., Goldsman, D. (eds.) Proceedings of the 1995 Winter Simulation Conference, pp. 303–308. IEEE, Piscataway, New Jersey (1995)

    Google Scholar 

  46. Wu, W.B.: On the Bahadur representation of sample quantiles for dependent sequences. Ann. Stat. 33(4), 1934–1963 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We have benefited enormously from our association with Pierre L’Ecuyer over many years. We are grateful for Pierre’s scholarship, leadership and friendship. This work was partially supported by National Science Foundation grant CMMI-2035086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane G. Henderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glynn, P.W., Henderson, S.G. (2022). A Central Limit Theorem For Empirical Quantiles in the Markov Chain Setting. In: Botev, Z., Keller, A., Lemieux, C., Tuffin, B. (eds) Advances in Modeling and Simulation. Springer, Cham. https://doi.org/10.1007/978-3-031-10193-9_11

Download citation

Publish with us

Policies and ethics