Abstract
We discuss combinations of simulation-based derivative estimators using infinitesimal perturbation analysis (IPA) and the likelihood ratio method (LRM). We first provide a historical perspective on combinations of IPA and LRM and then turn to connections with the generalized likelihood ratio (GLR) method. We re-derive a GLR estimator for barrier options through a combination of IPA and LRM. We then consider the behavior of a GLR estimator for a discrete-time approximation to a diffusion process as the time step shrinks. We show that an average of low-rank GLR estimators has a continuous-time limit, even though each individual estimator blows up. The limit matches an estimator previously derived through Malliavin calculus and also through a combination of IPA and LRM.
Keywords
- Sensitivity analysis
- Simulation
- Likelihood ratio method
This is a preview of subscription content, access via your institution.
Buying options
References
Avramidis, A., L’Ecuyer, P.: Efficient Monte Carlo and quasi-Monte Carlo option pricing under the variance gamma model. Manage. Sci. 52(12), 1930–1944 (2006)
Broadie, M., Glasserman, P.: Estimating security price derivatives using simulation. Manage. Sci. 42, 269–285 (1996)
Capriotti, L., Giles, M.B.: Algorithmic differentiation: adjoint Greeks made easy. Risk 25 (2012)
Chen, N., Glasserman, P.: Malliavin Greeks without Malliavin calculus. Stoch. Process. their Appl. 117, 1689–1723 (2007)
Fournié, E., Lasry, J.-M., Lebuchoux, J., Lions, Touzi, N.: Applications of Malliavin calculus to Monte Carlo methods in finance. Financ. Stoch. 3 391–412 (1999)
Giles, M.B.: Vibrato Monte Carlo. In: Monte Carlo and Quasi-Monte Carlo Methods 2008. Springer (2009)
Giles, M.B., Glasserman, P.: Smoking adjoints: fast Monte Carlo Greeks. Risk 19, 88–92 (2006)
Glasserman, P.: Smoothing complements and randomized score functions. Ann. Oper. Res. 39, 1–25 (1993)
Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2004)
Glasserman, P., Yao, D.: Some guidelines and guarantees for common random numbers. Manage. Sci. 38, 884–908 (1992)
Glynn, P.W.: Stochastic approximation for Monte Carlo optimization. In: Proceedings of the 1986 Winter Simulation Conference, pp. 356–365 (1986)
Glynn, P.W.: Optimization of stochastic systems via simulation. In: Proceedings of the 1989 Winter Simulation Conference 90–105 (1989)
Glynn, P.W., L’Ecuyer, P.: Likelihood ratio gradient estimation for stochastic recursions. Adv. Appl. Probab. 27, 1019–1053 (1995)
Gobet, E., Munos, R.: Sensitivity analysis using Ito-Malliavin calculus and martingales, and applications to stochastic optimal control. SIAM J. Control. Optim. 43, 1676–1713 (2005)
Griewal, A., Walther, A.: Evaluating Derivatives. SIAM, Philadelphia (2008)
Ho, Y.C., Cao, X.R.: Perturbation analysis and optimization of queueing networks. J. Optim. Theory Appl. 40, 559–582 (1983)
L’Ecuyer, P.: A unified view of the IPA, SF, and LR gradient estimation techniques. Manage. Sci. 36, 1364–1383 (1990)
L’Ecuyer, P.: On the interchange of derivative and expectation for likelihood ratio derivative estimators. Manage. Sci. 40, 738–747 (1995)
L’Ecuyer, P.: Quasi-Monte Carlo methods with applications in finance. Finance Stoch. 13(3), 307–349 (2009)
L’Ecuyer, P., Glynn, P.W.: Stochastic optimization by simulation: convergence proofs for the GI/G/1 queue in steady-state. Manage. Sci. 40(11), 1562–1578 (1994)
L’Ecuyer, P., Perron, G.: On the convergence rates of IPA and FDC derivative estimators. Oper. Res. 42(4), 643–656 (1994)
Lemieux, C., L’Ecuyer, P.: Efficiency improvement by lattice rules for pricing Asian options. In: Proceedings of the 1998 Winter Simulation Conference, pp. 579–586 (1998)
Peng, Y., Fu, M.C., Hu, J.Q., Heidergott, B.: A new unbiased stochastic derivative estimator for discontinuous sample performances with structural parameters. Oper. Res. 66(2), 487–499 (2018)
Peng, Y., Fu, M., Hu, J., L’Ecuyer, P., Tuffin, B.: Generalized likelihood ratio method for stochastic models with uniform random numbers as inputs. Unpublished manuscript (2020)
Peng, Y., Fu, M., Hu, J., L’Ecuyer, P., Tuffin, B.: Variance reduction for generalized likelihood ratio method by conditional Monte Carlo and randomized quasi-Monte Carlo. Unpublished manuscript (2021)
Peng, Y., Fu, M., Hu, J., L’Ecuyer, P., Tuffin, B.: Variance reduction for generalized likelihood ratio method in quantile sensitivity estimation. In: Proceedings of the 2021 Winter Simulation Conference (2021)
Reiman, M.I., Weiss, A.: Sensitivity analysis for simulation via likelihood ratios. Oper. Res. 37, 830–844 (1989)
Rubinstein, R.: Sensitivity analysis and performance extrapolation for computer simulation models. Oper. Res. 37, 72–81 (1989)
Rubinstein, R.: Sensitivity analysis of discrete event systems by the “push out’’ method. Ann. Oper. Res. 39, 229–250 (1992)
Wang, Y., Fu, M.C., Marcus, S.I.: A new stochastic derivative estimator for discontinuous functions with application to financial derivatives. Oper. Res. 60, 447–460 (2012)
Zazanis, M., Suri, R.: Perturbation analysis gives strongly consistent sensitivity estimates for the M/G/1 queue. Manage. Sci. 34, 39–64 (1988)
Zazanis, M., Suri, R.: Convergence rates of finite-difference sensitivity estimates for stochastic systems. Oper. Res. 41, 694–703 (1993)
Acknowledgements
I thank the editors for organizing this Festschrift and the reviewers for their helpful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Glasserman, P. (2022). Combined Derivative Estimators. In: Botev, Z., Keller, A., Lemieux, C., Tuffin, B. (eds) Advances in Modeling and Simulation. Springer, Cham. https://doi.org/10.1007/978-3-031-10193-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-10193-9_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10192-2
Online ISBN: 978-3-031-10193-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)