Skip to main content

Towards Detection of AI-Generated Texts and Misinformation

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13176)


Artificial Intelligence (AI) in the form of social text bots has emerged online in social media platforms such as Reddit, Facebook, Twitter, and Instagram. The increased cultural dependency on information and online interaction has given rise to bad actors who use text bots to generate and post texts on these platforms. Using the influence of social media, these actors are able to quickly disseminate misinformation and disinformation to change public perception on controversial political, economic, and social issues. To detect such AI-bot-based misinformation, we build a machine-learning-based algorithm and test it against the popular text generation algorithm, Generative Pre-trained Transformer (GPT), to show its effectiveness for distinguishing between AI-generated and human generated texts. Using a Neural Network with three hidden layers and Small BERT, we achieve a high accuracy performance between \(97\%\) and \(99\%\) depending on the loss function utilized for detection classification. This paper aims to facilitate future research in text bot detection in order to defend against misinformation and explore future research directions.


  • Misinformation detection
  • Bot detection
  • Artificial intelligence
  • Generative Pre-trained Transformer (GPT)
  • Natural language processing
  • Machine learning
  • Neural networks
  • Bidirectional Encoder Representations from Transformers (BERT)

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-10183-0_10
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-10183-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. Knight, W.: Ai can write disinformation now-and dupe human readers, Wired, May 2021

    Google Scholar 

  2. Lyons, K.: A college student used GPT-3 to write fake blog posts and ended up at the top of hacker news, The Verge, August 2020

    Google Scholar 

  3. McGuffie, K., Newhouse, A.: The radicalization risks of GPT-3 and advanced neural language models, arXiv preprint arXiv:2009.06807 (2020)

  4. Kudugunta, S., Ferrara, E.: Deep neural networks for bot detection. Inf. Sci. 467, 312–322 (2018)

    CrossRef  Google Scholar 

  5. Efthimion, P.G., Payne, S., Proferes, N.: Supervised machine learning bot detection techniques to identify social twitter bots. SMU Data Sci. Rev. 1(2), 5 (2018)

    Google Scholar 

  6. Guo, B., Ding, Y., Yao, L., Liang, Y., Yu, Z.: The future of misinformation detection: new perspectives and trends, arXiv preprint arXiv:1909.03654 (2019)

  7. Gehrmann, S., Strobelt, H., Rush, A.M.: Gltr: Statistical detection and visualization of generated text (2019)

    Google Scholar 

  8. Wei, F., Nguyen, U.T.: Twitter bot detection using bidirectional long short-term memory neural networks and word embeddings. In: 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), pp. 101–109 (2019)

    Google Scholar 

  9. Dukić, D., Keča, D., Stipić, D.: Are you human? detecting bots on twitter using bert. In: 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), pp. 631–636. IEEE (2020)

    Google Scholar 

  10. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018)

  11. McInnes, L., Healy, J., Melville, J.: Umap: uniform manifold approximation and projection for dimension reduction, arXiv preprint arXiv:1802.03426 (2018)

  12. Yarovaya, L.: Gamestop: Wallstreetbets trader army is back for a second share rally - here’s how to make sense of it, The Conversation, February 2021

    Google Scholar 

  13. Dhamija, A.R., Günther, M., Boult, T.E.: Reducing network agnostophobia, arXiv preprint arXiv:1811.04110 (2018)

  14. Song, L., Sehwag, V., Bhagoji, A.N., Mittal, P.: A critical evaluation of open-world machine learning, arXiv preprint arXiv:2007.04391 (2020)

  15. Eisner, B., Rocktäschel, T., Augenstein, I., Bošnjak, M., Riedel, S.: emoji2vec: Learning emoji representations from their description, arXiv preprint arXiv:1609.08359 (2016)

  16. Kovaleva, O., Romanov, A., Rogers, A., Rumshisky, A.: Revealing the dark secrets of bert, arXiv preprint arXiv:1908.08593 (2019)

  17. Clark, K., Khandelwal, U., Levy, O., Manning, C.D.: What does bert look at? an analysis of bert’s attention, arXiv preprint arXiv:1906.04341 (2019)

Download references


This material is based upon work supported by the National Science Foundation under Grant No. 1922410.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ahmad Najee-Ullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Najee-Ullah, A., Landeros, L., Balytskyi, Y., Chang, SY. (2022). Towards Detection of AI-Generated Texts and Misinformation. In: Parkin, S., Viganò, L. (eds) Socio-Technical Aspects in Security. STAST 2021. Lecture Notes in Computer Science, vol 13176. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10182-3

  • Online ISBN: 978-3-031-10183-0

  • eBook Packages: Computer ScienceComputer Science (R0)