Skip to main content

A Re-configurable Software-Hardware CNN Framework for Automatic Detection of Respiratory Symptoms

Part of the Springer Series on Bio- and Neurosystems book series (SSBN,volume 15)

Abstract

Detection of respiratory symptoms has long been an area of extensive research to expedite the process of machine aided diagnosis for various respiratory conditions. This chapter attempts to address the early diagnosis of respiratory conditions using low power scalable software and hardware involving end-to-end convolutional neural networks (CNNs). We propose RespiratorNet, a scalable multimodal CNN software hardware architecture that can take audio recordings, speech information, and other sensor modalities belonging to patient demographic or symptom information as input to classify different respiratory symptoms. We analyze four different publicly available datasets and use them as case studies as part of our experiment to classify respiratory symptoms. With regards to fitting the network architecture to the hardware framework, we perform windowing, low bit-width quantization, and hyperparameter optimization on the software side. As per our analysis, detection accuracy goes up by 5% when patient demographic information is included in the network architecture. The hardware prototype is designed using Verilog HDL on Xilinx Artix-7 100t FPGA with hardware scalability extending to accommodate different numbers of processing engines for parallel processing. The proposed hardware implementation has a low power consumption of only 245 mW and achieves an energy efficiency of 7.3 GOPS/W which is 4.3 better than the state-of the-art accelerator implementations. In addition, RespiratorNet TensorFlow model is implemented on NVIDIA Jetson TX2 SoC (CPU+GPU) and compared to TX2 single-core CPU and GPU implementations to provide scalability in terms of off-the-shelf platform implementations.

Keywords

  • Multimodal CNN
  • Scalable respiratory symptoms detection
  • Low power embedded
  • Audio detection
  • FPGA

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-10031-4_4
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-10031-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Zhao, X., Zhang, B., Li, P., Ma, C., Gu, J., Hou, P., Guo, Z., Wu, H., Bai, Y.: Incidence, clinical characteristics and prognostic factor of patients with COVID-19: a systematic review and meta-analysis. MedRxiv (2020)

    Google Scholar 

  2. Lee, P.-I., Hu, Y.-L., Chen, P.-Y., Huang, Y.-C., Hsueh, P.-R.: Are children less susceptible to COVID-19? J. Microbiol. Immunol. Infect. (2020)

    Google Scholar 

  3. Cho, S.-H., Lin, H.-C., Ghoshal, A.G., Muttalif, A.R.B.A., Thanaviratananich, S., Bagga, S., Faruqi, R., Sajjan, S., Brnabic, A.J.M., Dehle, F.C., et al.: Respiratory disease in the Asia-Pacific region: cough as a key symptom. In: Allergy & Asthma Proceedings, vol. 37

    Google Scholar 

  4. Korpáš, J., Tomori, Z.: Cough and Other Respiratory Reflexes./Kasˇel’ a Ine´ Respiracˇne´ Reflexy. Veda (1979)

    Google Scholar 

  5. Korpáš, J., Sadlonˇova´, J., Vrabec, M.: Analysis of the cough sound: an overview. Pulmonary Pharmacol. 9(5–6), 261–268 (1996)

    Google Scholar 

  6. Amoh, J., Odame, K.: DeepCough: a deep convolutional neural net-work in a wearable cough detection system. In: 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, pp. 1–4 (2015)

    Google Scholar 

  7. Ren, H., et al.: End-to-end scalable and low power multi-modal CNN for respiratory-related symptoms detection. In: 2020 IEEE 33rd International System- on-Chip Conference (SOCC) (SOCC 2020)

    Google Scholar 

  8. Mazumder, A.N., Ren, H., Rashid, H.-A., Hosseini, M., Chandrareddy, V., Homayoun, H., Mohsenin, T.: Automatic detection of respiratory symptoms using a low power multi-input CNN processor. IEEE Des. Test 2021, 1–1 (2021). https://doi.org/10.1109/MDAT.20213079318

    CrossRef  Google Scholar 

  9. Hosseini, M., Ren, H., Rashid, H., Mazumder, A., Prakash, B., Mohsenin, T.: Neural networks for pulmonary disease diagnosis using auditory and demographic information. In: epiDAMIK 2020: 3rd epiDAMIK ACM SIGKDD International Workshop on Epidemiology meets Data Mining and Knowledge Discovery. ACM, pp. 1–5, in press

    Google Scholar 

  10. Jafari, A., et al.: SensorNet: a scalable and low-power deep convolutional neural network for multimodal data classification. IEEE Trans. Circ. Syst. I Reg. Papers 66(1), 274–287 (2019). https://doi.org/10.1109/TCSI.2018.2848647

  11. Rashid, H.-A., Manjunath, N.K., Paneliya, H., Hosseini, M., Mohsenin, T.: A low-power LSTM processor for multi-channel brain EEG artifact detection. In: 2020 21th International Symposium on Quality Electronic Design (ISQED). IEEE (2020)

    Google Scholar 

  12. Shea, C., Page, A., Mohsenin, T.: SCALENet: a scalable low power accelerator for real-time embedded deep neural networks. In: ACM Proceedings of the 28th Edition of the Great Lakes Symposium on VLSI (GLSVLSI). ACM (2018)

    Google Scholar 

  13. Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., Deng, L., Penn, G., Yu, D.: Convolutional neural networks for speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 22(10), 1533–1545 (2014)

    Google Scholar 

  14. Piczak, K.J.: Environmental sound classification with convolutional neural networks. In: 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, pp. 1–6 (2015)

    Google Scholar 

  15. Amoh, J., Odame, K.: Deep neural networks for identifying cough sounds. IEEE Trans. Biomed. Circ. Syst. 10(5), 1003–1011 (2016)

    Google Scholar 

  16. Nakano, H., Furukawa, T., Tanigawa, T.: Tracheal sound analysis using a deep neural network to detect sleep apnea. J. Clin. Sleep Med. 15(8), 1125–1133 (2019)

    Google Scholar 

  17. Ryu, H., Park, J., Shin, H.: Classification of heart sound recordings using convolution neural network. In: 2016 Computing in Cardiology Conference (CinC). IEEE, pp. 1153–1156 (2016)

    Google Scholar 

  18. Aykanat, M., Kurt, O.K.B., Saryal, S.: Classification of lung sounds using convolutional neural networks. EURASIP J. Image Video Process. 1, 65 (2017)

    Google Scholar 

  19. Perna, D., Tagarelli, A.: Deep auscultation: predicting respiratory anomalies and diseases via recurrent neural networks. In: 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS). IEEE, pp. 50–55 (2019)

    Google Scholar 

  20. Rocha, B.M., Filos, D., Mendes, L., Vogiatzis, I., Perantoni, E., Kaimakamis, E., Natsiavas, P., Oliveira, A., Ja´come, C., Marques, A., et al.: A respiratory sound database for the development of automated classification. In: International Conference on Biomedical and Health Informatics. Springer, pp. 33–37 (2017)

    Google Scholar 

  21. Liu, R., Cai, S., Zhang, K., Hu, N.: Detection of adventitious respiratory sounds based on convolutional neural network. In: 2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS). IEEE, pp. 298–303 (2019)

    Google Scholar 

  22. Perna, D.: Convolutional neural networks learning from respiratory data. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, pp. 2109–2113 (2018)

    Google Scholar 

  23. Pham, L., McLoughlin, I., Phan, H., Tran, M., Nguyen, T., Palaniappan, R.: Robust Deep Learning Framework For Predicting Respiratory Anomalies and Diseases (2020). arXiv:2002.03894

  24. Demir, F., Sengur, A., Bajaj, V.: Convolutional neural networks based efficient approach for classification of lung diseases. Health Inf. Sci. Syst. 8(1), 4 (2020)

    Google Scholar 

  25. Acharya, J., Basu, A.: Deep neural network for respiratory sound classification in wearable devices enabled by patient specific model tuning. IEEE Trans. Biomed. Circ. Syst. 14(3), 535–544 (2020)

    Google Scholar 

  26. Laguarta, J., Hueto, F., Subirana, B.: COVID-19 artificial intelligence diagnosis using only cough recordings. IEEE Open J. Eng. Med. Biol. (2020)

    Google Scholar 

  27. Fonseca, E., Plakal, M., Font, F., Ellis, D.P.W., Favory, X., Pons, J., Serra, X.: General-purpose tagging of freesound au- dio with audioset labels: Task description, dataset, and baseline (2018). arXiv:1807.09902

  28. Piczak, K.J.: ESC: Dataset for environmental sound classification. In: Proceedings of the 23rd ACM international conference on Multimedia, pp. 1015–1018 (2015)

    Google Scholar 

  29. Orlandic, L., Teijeiro, T., Atienza, D.: The COUGHVID crowd- sourcing dataset: A corpus for the study of large-scale cough analysis algorithms (2020). arXiv:2009.11644

  30. Abadi, M. et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems (2015). http://www.tensorflow.org/

  31. McFee, B., Raffel, C., Liang, D., Ellis, D.P.W., Matt McVicar, Battenberg, E., Nieto, O.: librosa: Audio and Music Signal Analysis in Python (2015)

    Google Scholar 

  32. Rocha, B.M., Filos, D., Mendes, L., Serbes, G., Ulukaya, S., Kahya, Y.P., Jakovljevic, N., Turukalo, T.L., Vogiatzis, I.M., Perantoni, E., et al.: An open access database for the evaluation of respiratory sound classification algorithms. Physiol. Measur. 40(3), 035001 (2019)

    Google Scholar 

  33. Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., Cong, J.: Optimizing FPGA-based accelerator design for deep convolutional neural net- works. In: Proceedings of the 2015 ACM/SIGDA international symposium on field- programmable gate arrays, pp. 161–170 (2015)

    Google Scholar 

  34. Ma, Y., Suda, N., Cao, Y., Seo, J., Vrudhula, S.: Scalable and modularized RTL compilation of convolutional neural networks onto FPGA. In : 2016 26th International Conference on Field Programmable Logic and Applications (FPL). IEEE, pp. 1–8 (2016)

    Google Scholar 

  35. Huang, C., Ni, S., Chen, G.: A layer-based structured design of CNN on FPGA. In: 2017 IEEE 12th International Conference on ASIC (ASICON). IEEE, 1037–1040 (2017)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the University of Maryland, Baltimore, Institute for Clinical Translational Research (ICTR) and the National Center for Advancing Translational Sciences (NCATS) Clinical Translational Science Award (CTSA) grant number UL1TR003098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasib-Al Rashid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Rashid, HA., Ren, H., Mazumder, A.N., Sajadi, M.M., Mohsenin, T. (2022). A Re-configurable Software-Hardware CNN Framework for Automatic Detection of Respiratory Symptoms. In: Adibi, S., Rajabifard, A., Shariful Islam, S.M., Ahmadvand, A. (eds) The Science behind the COVID Pandemic and Healthcare Technology Solutions. Springer Series on Bio- and Neurosystems, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-031-10031-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10031-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10030-7

  • Online ISBN: 978-3-031-10031-4

  • eBook Packages: MedicineMedicine (R0)